Metamath Proof Explorer


Theorem mpllvec

Description: The polynomial ring is a vector space. (Contributed by SN, 29-Feb-2024)

Ref Expression
Hypothesis mplgrp.p P=ImPolyR
Assertion mpllvec IVRDivRingPLVec

Proof

Step Hyp Ref Expression
1 mplgrp.p P=ImPolyR
2 drngring RDivRingRRing
3 1 mpllmod IVRRingPLMod
4 2 3 sylan2 IVRDivRingPLMod
5 simpl IVRDivRingIV
6 simpr IVRDivRingRDivRing
7 1 5 6 mplsca IVRDivRingR=ScalarP
8 7 6 eqeltrrd IVRDivRingScalarPDivRing
9 eqid ScalarP=ScalarP
10 9 islvec PLVecPLModScalarPDivRing
11 4 8 10 sylanbrc IVRDivRingPLVec