| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mply1topmat.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mply1topmat.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 3 |  | mply1topmat.l |  |-  L = ( Base ` Q ) | 
						
							| 4 |  | mply1topmat.p |  |-  P = ( Poly1 ` R ) | 
						
							| 5 |  | mply1topmat.m |  |-  .x. = ( .s ` P ) | 
						
							| 6 |  | mply1topmat.e |  |-  E = ( .g ` ( mulGrp ` P ) ) | 
						
							| 7 |  | mply1topmat.y |  |-  Y = ( var1 ` R ) | 
						
							| 8 |  | mply1topmat.i |  |-  I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( p = O -> ( coe1 ` p ) = ( coe1 ` O ) ) | 
						
							| 10 | 9 | fveq1d |  |-  ( p = O -> ( ( coe1 ` p ) ` k ) = ( ( coe1 ` O ) ` k ) ) | 
						
							| 11 | 10 | oveqd |  |-  ( p = O -> ( i ( ( coe1 ` p ) ` k ) j ) = ( i ( ( coe1 ` O ) ` k ) j ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( p = O -> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) = ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) | 
						
							| 13 | 12 | mpteq2dv |  |-  ( p = O -> ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) = ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) | 
						
							| 14 | 13 | oveq2d |  |-  ( p = O -> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) = ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) | 
						
							| 15 | 14 | mpoeq3dv |  |-  ( p = O -> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) = ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) | 
						
							| 16 |  | simpr |  |-  ( ( N e. V /\ O e. L ) -> O e. L ) | 
						
							| 17 |  | simpl |  |-  ( ( N e. V /\ O e. L ) -> N e. V ) | 
						
							| 18 |  | mpoexga |  |-  ( ( N e. V /\ N e. V ) -> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) e. _V ) | 
						
							| 19 | 17 18 | syldan |  |-  ( ( N e. V /\ O e. L ) -> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) e. _V ) | 
						
							| 20 | 8 15 16 19 | fvmptd3 |  |-  ( ( N e. V /\ O e. L ) -> ( I ` O ) = ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) |