Metamath Proof Explorer


Theorem mply1topmatval

Description: A polynomial over matrices transformed into a polynomial matrix. I is the inverse function of the transformation T of polynomial matrices into polynomials over matrices: ( T( IO ) ) = O ) (see mp2pm2mp ). (Contributed by AV, 6-Oct-2019)

Ref Expression
Hypotheses mply1topmat.a
|- A = ( N Mat R )
mply1topmat.q
|- Q = ( Poly1 ` A )
mply1topmat.l
|- L = ( Base ` Q )
mply1topmat.p
|- P = ( Poly1 ` R )
mply1topmat.m
|- .x. = ( .s ` P )
mply1topmat.e
|- E = ( .g ` ( mulGrp ` P ) )
mply1topmat.y
|- Y = ( var1 ` R )
mply1topmat.i
|- I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) )
Assertion mply1topmatval
|- ( ( N e. V /\ O e. L ) -> ( I ` O ) = ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mply1topmat.a
 |-  A = ( N Mat R )
2 mply1topmat.q
 |-  Q = ( Poly1 ` A )
3 mply1topmat.l
 |-  L = ( Base ` Q )
4 mply1topmat.p
 |-  P = ( Poly1 ` R )
5 mply1topmat.m
 |-  .x. = ( .s ` P )
6 mply1topmat.e
 |-  E = ( .g ` ( mulGrp ` P ) )
7 mply1topmat.y
 |-  Y = ( var1 ` R )
8 mply1topmat.i
 |-  I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) )
9 fveq2
 |-  ( p = O -> ( coe1 ` p ) = ( coe1 ` O ) )
10 9 fveq1d
 |-  ( p = O -> ( ( coe1 ` p ) ` k ) = ( ( coe1 ` O ) ` k ) )
11 10 oveqd
 |-  ( p = O -> ( i ( ( coe1 ` p ) ` k ) j ) = ( i ( ( coe1 ` O ) ` k ) j ) )
12 11 oveq1d
 |-  ( p = O -> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) = ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) )
13 12 mpteq2dv
 |-  ( p = O -> ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) = ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) )
14 13 oveq2d
 |-  ( p = O -> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) = ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) )
15 14 mpoeq3dv
 |-  ( p = O -> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) = ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) )
16 simpr
 |-  ( ( N e. V /\ O e. L ) -> O e. L )
17 simpl
 |-  ( ( N e. V /\ O e. L ) -> N e. V )
18 mpoexga
 |-  ( ( N e. V /\ N e. V ) -> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) e. _V )
19 17 18 syldan
 |-  ( ( N e. V /\ O e. L ) -> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) e. _V )
20 8 15 16 19 fvmptd3
 |-  ( ( N e. V /\ O e. L ) -> ( I ` O ) = ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) )