| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mply1topmat.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mply1topmat.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 3 |  | mply1topmat.l |  |-  L = ( Base ` Q ) | 
						
							| 4 |  | mply1topmat.p |  |-  P = ( Poly1 ` R ) | 
						
							| 5 |  | mply1topmat.m |  |-  .x. = ( .s ` P ) | 
						
							| 6 |  | mply1topmat.e |  |-  E = ( .g ` ( mulGrp ` P ) ) | 
						
							| 7 |  | mply1topmat.y |  |-  Y = ( var1 ` R ) | 
						
							| 8 |  | mply1topmat.i |  |-  I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) | 
						
							| 9 |  | mply1topmatcl.c |  |-  C = ( N Mat P ) | 
						
							| 10 |  | mply1topmatcl.b |  |-  B = ( Base ` C ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 | mply1topmatval |  |-  ( ( N e. Fin /\ O e. L ) -> ( I ` O ) = ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) | 
						
							| 12 | 11 | 3adant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( I ` O ) = ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) | 
						
							| 13 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 14 |  | simp1 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> N e. Fin ) | 
						
							| 15 | 4 | fvexi |  |-  P e. _V | 
						
							| 16 | 15 | a1i |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> P e. _V ) | 
						
							| 17 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 18 | 4 | ply1ring |  |-  ( R e. Ring -> P e. Ring ) | 
						
							| 19 |  | ringcmn |  |-  ( P e. Ring -> P e. CMnd ) | 
						
							| 20 | 18 19 | syl |  |-  ( R e. Ring -> P e. CMnd ) | 
						
							| 21 | 20 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> P e. CMnd ) | 
						
							| 22 | 21 | 3ad2ant1 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) -> P e. CMnd ) | 
						
							| 23 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 24 | 23 | a1i |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) -> NN0 e. _V ) | 
						
							| 25 | 4 | ply1lmod |  |-  ( R e. Ring -> P e. LMod ) | 
						
							| 26 | 25 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> P e. LMod ) | 
						
							| 27 | 26 | 3ad2ant1 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) -> P e. LMod ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) /\ k e. NN0 ) -> P e. LMod ) | 
						
							| 29 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 30 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 31 |  | simpl2 |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) /\ k e. NN0 ) -> i e. N ) | 
						
							| 32 |  | simpl3 |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) /\ k e. NN0 ) -> j e. N ) | 
						
							| 33 |  | simpl13 |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) /\ k e. NN0 ) -> O e. L ) | 
						
							| 34 |  | eqid |  |-  ( coe1 ` O ) = ( coe1 ` O ) | 
						
							| 35 | 34 3 2 30 | coe1f |  |-  ( O e. L -> ( coe1 ` O ) : NN0 --> ( Base ` A ) ) | 
						
							| 36 | 33 35 | syl |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) /\ k e. NN0 ) -> ( coe1 ` O ) : NN0 --> ( Base ` A ) ) | 
						
							| 37 |  | simpr |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 38 | 36 37 | ffvelcdmd |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) /\ k e. NN0 ) -> ( ( coe1 ` O ) ` k ) e. ( Base ` A ) ) | 
						
							| 39 | 1 29 30 31 32 38 | matecld |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) /\ k e. NN0 ) -> ( i ( ( coe1 ` O ) ` k ) j ) e. ( Base ` R ) ) | 
						
							| 40 | 4 | ply1sca |  |-  ( R e. Ring -> R = ( Scalar ` P ) ) | 
						
							| 41 | 40 | eqcomd |  |-  ( R e. Ring -> ( Scalar ` P ) = R ) | 
						
							| 42 | 41 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( Scalar ` P ) = R ) | 
						
							| 43 | 42 | fveq2d |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) | 
						
							| 44 | 43 | 3ad2ant1 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) /\ k e. NN0 ) -> ( Base ` ( Scalar ` P ) ) = ( Base ` R ) ) | 
						
							| 46 | 39 45 | eleqtrrd |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) /\ k e. NN0 ) -> ( i ( ( coe1 ` O ) ` k ) j ) e. ( Base ` ( Scalar ` P ) ) ) | 
						
							| 47 |  | eqid |  |-  ( mulGrp ` P ) = ( mulGrp ` P ) | 
						
							| 48 | 47 13 | mgpbas |  |-  ( Base ` P ) = ( Base ` ( mulGrp ` P ) ) | 
						
							| 49 | 18 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> P e. Ring ) | 
						
							| 50 | 47 | ringmgp |  |-  ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) | 
						
							| 51 | 49 50 | syl |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( mulGrp ` P ) e. Mnd ) | 
						
							| 52 | 51 | 3ad2ant1 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) -> ( mulGrp ` P ) e. Mnd ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) /\ k e. NN0 ) -> ( mulGrp ` P ) e. Mnd ) | 
						
							| 54 | 7 4 13 | vr1cl |  |-  ( R e. Ring -> Y e. ( Base ` P ) ) | 
						
							| 55 | 54 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> Y e. ( Base ` P ) ) | 
						
							| 56 | 55 | 3ad2ant1 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) -> Y e. ( Base ` P ) ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) /\ k e. NN0 ) -> Y e. ( Base ` P ) ) | 
						
							| 58 | 48 6 53 37 57 | mulgnn0cld |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) /\ k e. NN0 ) -> ( k E Y ) e. ( Base ` P ) ) | 
						
							| 59 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 60 |  | eqid |  |-  ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) | 
						
							| 61 | 13 59 5 60 | lmodvscl |  |-  ( ( P e. LMod /\ ( i ( ( coe1 ` O ) ` k ) j ) e. ( Base ` ( Scalar ` P ) ) /\ ( k E Y ) e. ( Base ` P ) ) -> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) e. ( Base ` P ) ) | 
						
							| 62 | 28 46 58 61 | syl3anc |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) /\ k e. NN0 ) -> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) e. ( Base ` P ) ) | 
						
							| 63 | 62 | fmpttd |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) -> ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) : NN0 --> ( Base ` P ) ) | 
						
							| 64 | 1 2 3 4 5 6 7 | mply1topmatcllem |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) -> ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) finSupp ( 0g ` P ) ) | 
						
							| 65 | 13 17 22 24 63 64 | gsumcl |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ i e. N /\ j e. N ) -> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) e. ( Base ` P ) ) | 
						
							| 66 | 9 13 10 14 16 65 | matbas2d |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) e. B ) | 
						
							| 67 | 12 66 | eqeltrd |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( I ` O ) e. B ) |