| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mply1topmat.a |
|
| 2 |
|
mply1topmat.q |
|
| 3 |
|
mply1topmat.l |
|
| 4 |
|
mply1topmat.p |
|
| 5 |
|
mply1topmat.m |
|
| 6 |
|
mply1topmat.e |
|
| 7 |
|
mply1topmat.y |
|
| 8 |
|
mply1topmat.i |
|
| 9 |
|
mply1topmatcl.c |
|
| 10 |
|
mply1topmatcl.b |
|
| 11 |
1 2 3 4 5 6 7 8
|
mply1topmatval |
|
| 12 |
11
|
3adant2 |
|
| 13 |
|
eqid |
|
| 14 |
|
simp1 |
|
| 15 |
4
|
fvexi |
|
| 16 |
15
|
a1i |
|
| 17 |
|
eqid |
|
| 18 |
4
|
ply1ring |
|
| 19 |
|
ringcmn |
|
| 20 |
18 19
|
syl |
|
| 21 |
20
|
3ad2ant2 |
|
| 22 |
21
|
3ad2ant1 |
|
| 23 |
|
nn0ex |
|
| 24 |
23
|
a1i |
|
| 25 |
4
|
ply1lmod |
|
| 26 |
25
|
3ad2ant2 |
|
| 27 |
26
|
3ad2ant1 |
|
| 28 |
27
|
adantr |
|
| 29 |
|
eqid |
|
| 30 |
|
eqid |
|
| 31 |
|
simpl2 |
|
| 32 |
|
simpl3 |
|
| 33 |
|
simpl13 |
|
| 34 |
|
eqid |
|
| 35 |
34 3 2 30
|
coe1f |
|
| 36 |
33 35
|
syl |
|
| 37 |
|
simpr |
|
| 38 |
36 37
|
ffvelcdmd |
|
| 39 |
1 29 30 31 32 38
|
matecld |
|
| 40 |
4
|
ply1sca |
|
| 41 |
40
|
eqcomd |
|
| 42 |
41
|
3ad2ant2 |
|
| 43 |
42
|
fveq2d |
|
| 44 |
43
|
3ad2ant1 |
|
| 45 |
44
|
adantr |
|
| 46 |
39 45
|
eleqtrrd |
|
| 47 |
|
eqid |
|
| 48 |
47 13
|
mgpbas |
|
| 49 |
18
|
3ad2ant2 |
|
| 50 |
47
|
ringmgp |
|
| 51 |
49 50
|
syl |
|
| 52 |
51
|
3ad2ant1 |
|
| 53 |
52
|
adantr |
|
| 54 |
7 4 13
|
vr1cl |
|
| 55 |
54
|
3ad2ant2 |
|
| 56 |
55
|
3ad2ant1 |
|
| 57 |
56
|
adantr |
|
| 58 |
48 6 53 37 57
|
mulgnn0cld |
|
| 59 |
|
eqid |
|
| 60 |
|
eqid |
|
| 61 |
13 59 5 60
|
lmodvscl |
|
| 62 |
28 46 58 61
|
syl3anc |
|
| 63 |
62
|
fmpttd |
|
| 64 |
1 2 3 4 5 6 7
|
mply1topmatcllem |
|
| 65 |
13 17 22 24 63 64
|
gsumcl |
|
| 66 |
9 13 10 14 16 65
|
matbas2d |
|
| 67 |
12 66
|
eqeltrd |
|