Metamath Proof Explorer


Theorem mp2pm2mplem1

Description: Lemma 1 for mp2pm2mp . (Contributed by AV, 9-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses mp2pm2mp.a A=NMatR
mp2pm2mp.q Q=Poly1A
mp2pm2mp.l L=BaseQ
mp2pm2mp.m ·˙=P
mp2pm2mp.e E=mulGrpP
mp2pm2mp.y Y=var1R
mp2pm2mp.i I=pLiN,jNPk0icoe1pkj·˙kEY
Assertion mp2pm2mplem1 NFinRRingOLIO=iN,jNPk0icoe1Okj·˙kEY

Proof

Step Hyp Ref Expression
1 mp2pm2mp.a A=NMatR
2 mp2pm2mp.q Q=Poly1A
3 mp2pm2mp.l L=BaseQ
4 mp2pm2mp.m ·˙=P
5 mp2pm2mp.e E=mulGrpP
6 mp2pm2mp.y Y=var1R
7 mp2pm2mp.i I=pLiN,jNPk0icoe1pkj·˙kEY
8 fveq2 p=Ocoe1p=coe1O
9 8 fveq1d p=Ocoe1pk=coe1Ok
10 9 oveqd p=Oicoe1pkj=icoe1Okj
11 10 oveq1d p=Oicoe1pkj·˙kEY=icoe1Okj·˙kEY
12 11 mpteq2dv p=Ok0icoe1pkj·˙kEY=k0icoe1Okj·˙kEY
13 12 oveq2d p=OPk0icoe1pkj·˙kEY=Pk0icoe1Okj·˙kEY
14 13 mpoeq3dv p=OiN,jNPk0icoe1pkj·˙kEY=iN,jNPk0icoe1Okj·˙kEY
15 simp3 NFinRRingOLOL
16 simp1 NFinRRingOLNFin
17 mpoexga NFinNFiniN,jNPk0icoe1Okj·˙kEYV
18 16 16 17 syl2anc NFinRRingOLiN,jNPk0icoe1Okj·˙kEYV
19 7 14 15 18 fvmptd3 NFinRRingOLIO=iN,jNPk0icoe1Okj·˙kEY