Metamath Proof Explorer


Theorem mp2pm2mplem1

Description: Lemma 1 for mp2pm2mp . (Contributed by AV, 9-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses mp2pm2mp.a A = N Mat R
mp2pm2mp.q Q = Poly 1 A
mp2pm2mp.l L = Base Q
mp2pm2mp.m · ˙ = P
mp2pm2mp.e E = mulGrp P
mp2pm2mp.y Y = var 1 R
mp2pm2mp.i I = p L i N , j N P k 0 i coe 1 p k j · ˙ k E Y
Assertion mp2pm2mplem1 N Fin R Ring O L I O = i N , j N P k 0 i coe 1 O k j · ˙ k E Y

Proof

Step Hyp Ref Expression
1 mp2pm2mp.a A = N Mat R
2 mp2pm2mp.q Q = Poly 1 A
3 mp2pm2mp.l L = Base Q
4 mp2pm2mp.m · ˙ = P
5 mp2pm2mp.e E = mulGrp P
6 mp2pm2mp.y Y = var 1 R
7 mp2pm2mp.i I = p L i N , j N P k 0 i coe 1 p k j · ˙ k E Y
8 fveq2 p = O coe 1 p = coe 1 O
9 8 fveq1d p = O coe 1 p k = coe 1 O k
10 9 oveqd p = O i coe 1 p k j = i coe 1 O k j
11 10 oveq1d p = O i coe 1 p k j · ˙ k E Y = i coe 1 O k j · ˙ k E Y
12 11 mpteq2dv p = O k 0 i coe 1 p k j · ˙ k E Y = k 0 i coe 1 O k j · ˙ k E Y
13 12 oveq2d p = O P k 0 i coe 1 p k j · ˙ k E Y = P k 0 i coe 1 O k j · ˙ k E Y
14 13 mpoeq3dv p = O i N , j N P k 0 i coe 1 p k j · ˙ k E Y = i N , j N P k 0 i coe 1 O k j · ˙ k E Y
15 simp3 N Fin R Ring O L O L
16 simp1 N Fin R Ring O L N Fin
17 mpoexga N Fin N Fin i N , j N P k 0 i coe 1 O k j · ˙ k E Y V
18 16 16 17 syl2anc N Fin R Ring O L i N , j N P k 0 i coe 1 O k j · ˙ k E Y V
19 7 14 15 18 fvmptd3 N Fin R Ring O L I O = i N , j N P k 0 i coe 1 O k j · ˙ k E Y