| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mp2pm2mp.a |
|
| 2 |
|
mp2pm2mp.q |
|
| 3 |
|
mp2pm2mp.l |
|
| 4 |
|
mp2pm2mp.m |
|
| 5 |
|
mp2pm2mp.e |
|
| 6 |
|
mp2pm2mp.y |
|
| 7 |
|
mp2pm2mp.i |
|
| 8 |
|
mp2pm2mplem2.p |
|
| 9 |
|
mp2pm2mp.t |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
1 2 3 8 4 5 6 7 10 11
|
mply1topmatcl |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
8 10 11 13 14 15 1 2 9
|
pm2mpfval |
|
| 17 |
12 16
|
syld3an3 |
|
| 18 |
1
|
matring |
|
| 19 |
18
|
3adant3 |
|
| 20 |
|
eqid |
|
| 21 |
2
|
ply1ring |
|
| 22 |
|
ringcmn |
|
| 23 |
18 21 22
|
3syl |
|
| 24 |
23
|
3adant3 |
|
| 25 |
|
nn0ex |
|
| 26 |
25
|
a1i |
|
| 27 |
19
|
adantr |
|
| 28 |
|
simpl2 |
|
| 29 |
12
|
adantr |
|
| 30 |
|
simpr |
|
| 31 |
|
eqid |
|
| 32 |
8 10 11 1 31
|
decpmatcl |
|
| 33 |
28 29 30 32
|
syl3anc |
|
| 34 |
|
eqid |
|
| 35 |
31 2 15 13 34 14 3
|
ply1tmcl |
|
| 36 |
27 33 30 35
|
syl3anc |
|
| 37 |
36
|
fmpttd |
|
| 38 |
|
fveq2 |
|
| 39 |
38
|
oveqd |
|
| 40 |
|
oveq1 |
|
| 41 |
39 40
|
oveq12d |
|
| 42 |
41
|
cbvmptv |
|
| 43 |
42
|
a1i |
|
| 44 |
43
|
oveq2d |
|
| 45 |
44
|
mpoeq3ia |
|
| 46 |
45
|
mpteq2i |
|
| 47 |
7 46
|
eqtri |
|
| 48 |
1 2 3 4 5 6 47 8 13 14 15
|
mp2pm2mplem5 |
|
| 49 |
3 20 24 26 37 48
|
gsumcl |
|
| 50 |
|
simp3 |
|
| 51 |
19 49 50
|
3jca |
|
| 52 |
1 2 3 4 5 6 7 8
|
mp2pm2mplem4 |
|
| 53 |
52
|
oveq1d |
|
| 54 |
53
|
adantlr |
|
| 55 |
54
|
mpteq2dva |
|
| 56 |
55
|
oveq2d |
|
| 57 |
56
|
fveq2d |
|
| 58 |
57
|
fveq1d |
|
| 59 |
19 50
|
jca |
|
| 60 |
59
|
adantr |
|
| 61 |
|
eqid |
|
| 62 |
2 15 3 13 34 14 61
|
ply1coe |
|
| 63 |
60 62
|
syl |
|
| 64 |
63
|
eqcomd |
|
| 65 |
64
|
fveq2d |
|
| 66 |
65
|
fveq1d |
|
| 67 |
58 66
|
eqtrd |
|
| 68 |
67
|
ralrimiva |
|
| 69 |
|
eqid |
|
| 70 |
2 3 69 61
|
eqcoe1ply1eq |
|
| 71 |
51 68 70
|
sylc |
|
| 72 |
17 71
|
eqtrd |
|