Metamath Proof Explorer


Theorem mp2pm2mp

Description: A polynomial over matrices transformed into a polynomial matrix transformed back into the polynomial over matrices. (Contributed by AV, 12-Oct-2019)

Ref Expression
Hypotheses mp2pm2mp.a A = N Mat R
mp2pm2mp.q Q = Poly 1 A
mp2pm2mp.l L = Base Q
mp2pm2mp.m · ˙ = P
mp2pm2mp.e E = mulGrp P
mp2pm2mp.y Y = var 1 R
mp2pm2mp.i I = p L i N , j N P k 0 i coe 1 p k j · ˙ k E Y
mp2pm2mplem2.p P = Poly 1 R
mp2pm2mp.t T = N pMatToMatPoly R
Assertion mp2pm2mp N Fin R Ring O L T I O = O

Proof

Step Hyp Ref Expression
1 mp2pm2mp.a A = N Mat R
2 mp2pm2mp.q Q = Poly 1 A
3 mp2pm2mp.l L = Base Q
4 mp2pm2mp.m · ˙ = P
5 mp2pm2mp.e E = mulGrp P
6 mp2pm2mp.y Y = var 1 R
7 mp2pm2mp.i I = p L i N , j N P k 0 i coe 1 p k j · ˙ k E Y
8 mp2pm2mplem2.p P = Poly 1 R
9 mp2pm2mp.t T = N pMatToMatPoly R
10 eqid N Mat P = N Mat P
11 eqid Base N Mat P = Base N Mat P
12 1 2 3 8 4 5 6 7 10 11 mply1topmatcl N Fin R Ring O L I O Base N Mat P
13 eqid Q = Q
14 eqid mulGrp Q = mulGrp Q
15 eqid var 1 A = var 1 A
16 8 10 11 13 14 15 1 2 9 pm2mpfval N Fin R Ring I O Base N Mat P T I O = Q n 0 I O decompPMat n Q n mulGrp Q var 1 A
17 12 16 syld3an3 N Fin R Ring O L T I O = Q n 0 I O decompPMat n Q n mulGrp Q var 1 A
18 1 matring N Fin R Ring A Ring
19 18 3adant3 N Fin R Ring O L A Ring
20 eqid 0 Q = 0 Q
21 2 ply1ring A Ring Q Ring
22 ringcmn Q Ring Q CMnd
23 18 21 22 3syl N Fin R Ring Q CMnd
24 23 3adant3 N Fin R Ring O L Q CMnd
25 nn0ex 0 V
26 25 a1i N Fin R Ring O L 0 V
27 19 adantr N Fin R Ring O L n 0 A Ring
28 simpl2 N Fin R Ring O L n 0 R Ring
29 12 adantr N Fin R Ring O L n 0 I O Base N Mat P
30 simpr N Fin R Ring O L n 0 n 0
31 eqid Base A = Base A
32 8 10 11 1 31 decpmatcl R Ring I O Base N Mat P n 0 I O decompPMat n Base A
33 28 29 30 32 syl3anc N Fin R Ring O L n 0 I O decompPMat n Base A
34 eqid mulGrp Q = mulGrp Q
35 31 2 15 13 34 14 3 ply1tmcl A Ring I O decompPMat n Base A n 0 I O decompPMat n Q n mulGrp Q var 1 A L
36 27 33 30 35 syl3anc N Fin R Ring O L n 0 I O decompPMat n Q n mulGrp Q var 1 A L
37 36 fmpttd N Fin R Ring O L n 0 I O decompPMat n Q n mulGrp Q var 1 A : 0 L
38 fveq2 k = n coe 1 p k = coe 1 p n
39 38 oveqd k = n i coe 1 p k j = i coe 1 p n j
40 oveq1 k = n k E Y = n E Y
41 39 40 oveq12d k = n i coe 1 p k j · ˙ k E Y = i coe 1 p n j · ˙ n E Y
42 41 cbvmptv k 0 i coe 1 p k j · ˙ k E Y = n 0 i coe 1 p n j · ˙ n E Y
43 42 a1i i N j N k 0 i coe 1 p k j · ˙ k E Y = n 0 i coe 1 p n j · ˙ n E Y
44 43 oveq2d i N j N P k 0 i coe 1 p k j · ˙ k E Y = P n 0 i coe 1 p n j · ˙ n E Y
45 44 mpoeq3ia i N , j N P k 0 i coe 1 p k j · ˙ k E Y = i N , j N P n 0 i coe 1 p n j · ˙ n E Y
46 45 mpteq2i p L i N , j N P k 0 i coe 1 p k j · ˙ k E Y = p L i N , j N P n 0 i coe 1 p n j · ˙ n E Y
47 7 46 eqtri I = p L i N , j N P n 0 i coe 1 p n j · ˙ n E Y
48 1 2 3 4 5 6 47 8 13 14 15 mp2pm2mplem5 N Fin R Ring O L finSupp 0 Q n 0 I O decompPMat n Q n mulGrp Q var 1 A
49 3 20 24 26 37 48 gsumcl N Fin R Ring O L Q n 0 I O decompPMat n Q n mulGrp Q var 1 A L
50 simp3 N Fin R Ring O L O L
51 19 49 50 3jca N Fin R Ring O L A Ring Q n 0 I O decompPMat n Q n mulGrp Q var 1 A L O L
52 1 2 3 4 5 6 7 8 mp2pm2mplem4 N Fin R Ring O L n 0 I O decompPMat n = coe 1 O n
53 52 oveq1d N Fin R Ring O L n 0 I O decompPMat n Q n mulGrp Q var 1 A = coe 1 O n Q n mulGrp Q var 1 A
54 53 adantlr N Fin R Ring O L l 0 n 0 I O decompPMat n Q n mulGrp Q var 1 A = coe 1 O n Q n mulGrp Q var 1 A
55 54 mpteq2dva N Fin R Ring O L l 0 n 0 I O decompPMat n Q n mulGrp Q var 1 A = n 0 coe 1 O n Q n mulGrp Q var 1 A
56 55 oveq2d N Fin R Ring O L l 0 Q n 0 I O decompPMat n Q n mulGrp Q var 1 A = Q n 0 coe 1 O n Q n mulGrp Q var 1 A
57 56 fveq2d N Fin R Ring O L l 0 coe 1 Q n 0 I O decompPMat n Q n mulGrp Q var 1 A = coe 1 Q n 0 coe 1 O n Q n mulGrp Q var 1 A
58 57 fveq1d N Fin R Ring O L l 0 coe 1 Q n 0 I O decompPMat n Q n mulGrp Q var 1 A l = coe 1 Q n 0 coe 1 O n Q n mulGrp Q var 1 A l
59 19 50 jca N Fin R Ring O L A Ring O L
60 59 adantr N Fin R Ring O L l 0 A Ring O L
61 eqid coe 1 O = coe 1 O
62 2 15 3 13 34 14 61 ply1coe A Ring O L O = Q n 0 coe 1 O n Q n mulGrp Q var 1 A
63 60 62 syl N Fin R Ring O L l 0 O = Q n 0 coe 1 O n Q n mulGrp Q var 1 A
64 63 eqcomd N Fin R Ring O L l 0 Q n 0 coe 1 O n Q n mulGrp Q var 1 A = O
65 64 fveq2d N Fin R Ring O L l 0 coe 1 Q n 0 coe 1 O n Q n mulGrp Q var 1 A = coe 1 O
66 65 fveq1d N Fin R Ring O L l 0 coe 1 Q n 0 coe 1 O n Q n mulGrp Q var 1 A l = coe 1 O l
67 58 66 eqtrd N Fin R Ring O L l 0 coe 1 Q n 0 I O decompPMat n Q n mulGrp Q var 1 A l = coe 1 O l
68 67 ralrimiva N Fin R Ring O L l 0 coe 1 Q n 0 I O decompPMat n Q n mulGrp Q var 1 A l = coe 1 O l
69 eqid coe 1 Q n 0 I O decompPMat n Q n mulGrp Q var 1 A = coe 1 Q n 0 I O decompPMat n Q n mulGrp Q var 1 A
70 2 3 69 61 eqcoe1ply1eq A Ring Q n 0 I O decompPMat n Q n mulGrp Q var 1 A L O L l 0 coe 1 Q n 0 I O decompPMat n Q n mulGrp Q var 1 A l = coe 1 O l Q n 0 I O decompPMat n Q n mulGrp Q var 1 A = O
71 51 68 70 sylc N Fin R Ring O L Q n 0 I O decompPMat n Q n mulGrp Q var 1 A = O
72 17 71 eqtrd N Fin R Ring O L T I O = O