Description: Lemma 5 for mp2pm2mp . (Contributed by AV, 12-Oct-2019) (Revised by AV, 5-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mp2pm2mp.a | |
|
mp2pm2mp.q | |
||
mp2pm2mp.l | |
||
mp2pm2mp.m | |
||
mp2pm2mp.e | |
||
mp2pm2mp.y | |
||
mp2pm2mp.i | |
||
mp2pm2mplem2.p | |
||
mp2pm2mplem5.m | |
||
mp2pm2mplem5.e | |
||
mp2pm2mplem5.x | |
||
Assertion | mp2pm2mplem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2pm2mp.a | |
|
2 | mp2pm2mp.q | |
|
3 | mp2pm2mp.l | |
|
4 | mp2pm2mp.m | |
|
5 | mp2pm2mp.e | |
|
6 | mp2pm2mp.y | |
|
7 | mp2pm2mp.i | |
|
8 | mp2pm2mplem2.p | |
|
9 | mp2pm2mplem5.m | |
|
10 | mp2pm2mplem5.e | |
|
11 | mp2pm2mplem5.x | |
|
12 | nn0ex | |
|
13 | 12 | a1i | |
14 | 1 | matring | |
15 | 2 | ply1lmod | |
16 | 14 15 | syl | |
17 | 16 | 3adant3 | |
18 | 14 | 3adant3 | |
19 | 2 | ply1sca | |
20 | 18 19 | syl | |
21 | simpl2 | |
|
22 | eqid | |
|
23 | eqid | |
|
24 | 1 2 3 8 4 5 6 7 22 23 | mply1topmatcl | |
25 | 24 | adantr | |
26 | simpr | |
|
27 | eqid | |
|
28 | 8 22 23 1 27 | decpmatcl | |
29 | 21 25 26 28 | syl3anc | |
30 | eqid | |
|
31 | 2 11 30 10 3 | ply1moncl | |
32 | 18 31 | sylan | |
33 | eqid | |
|
34 | eqid | |
|
35 | fveq2 | |
|
36 | 35 | oveqd | |
37 | oveq1 | |
|
38 | 36 37 | oveq12d | |
39 | 38 | cbvmptv | |
40 | 39 | oveq2i | |
41 | 40 | a1i | |
42 | 41 | mpoeq3ia | |
43 | 42 | mpteq2i | |
44 | 7 43 | eqtri | |
45 | 1 2 3 4 5 6 44 8 | mp2pm2mplem4 | |
46 | 45 | mpteq2dva | |
47 | 2 3 34 | mptcoe1fsupp | |
48 | 14 47 | stoic3 | |
49 | 46 48 | eqbrtrd | |
50 | 13 17 20 3 29 32 33 34 9 49 | mptscmfsupp0 | |