Metamath Proof Explorer


Theorem mp2pm2mplem5

Description: Lemma 5 for mp2pm2mp . (Contributed by AV, 12-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses mp2pm2mp.a 𝐴 = ( 𝑁 Mat 𝑅 )
mp2pm2mp.q 𝑄 = ( Poly1𝐴 )
mp2pm2mp.l 𝐿 = ( Base ‘ 𝑄 )
mp2pm2mp.m · = ( ·𝑠𝑃 )
mp2pm2mp.e 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
mp2pm2mp.y 𝑌 = ( var1𝑅 )
mp2pm2mp.i 𝐼 = ( 𝑝𝐿 ↦ ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) )
mp2pm2mplem2.p 𝑃 = ( Poly1𝑅 )
mp2pm2mplem5.m = ( ·𝑠𝑄 )
mp2pm2mplem5.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
mp2pm2mplem5.x 𝑋 = ( var1𝐴 )
Assertion mp2pm2mplem5 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) finSupp ( 0g𝑄 ) )

Proof

Step Hyp Ref Expression
1 mp2pm2mp.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 mp2pm2mp.q 𝑄 = ( Poly1𝐴 )
3 mp2pm2mp.l 𝐿 = ( Base ‘ 𝑄 )
4 mp2pm2mp.m · = ( ·𝑠𝑃 )
5 mp2pm2mp.e 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
6 mp2pm2mp.y 𝑌 = ( var1𝑅 )
7 mp2pm2mp.i 𝐼 = ( 𝑝𝐿 ↦ ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) )
8 mp2pm2mplem2.p 𝑃 = ( Poly1𝑅 )
9 mp2pm2mplem5.m = ( ·𝑠𝑄 )
10 mp2pm2mplem5.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
11 mp2pm2mplem5.x 𝑋 = ( var1𝐴 )
12 nn0ex 0 ∈ V
13 12 a1i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ℕ0 ∈ V )
14 1 matring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
15 2 ply1lmod ( 𝐴 ∈ Ring → 𝑄 ∈ LMod )
16 14 15 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ LMod )
17 16 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → 𝑄 ∈ LMod )
18 14 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → 𝐴 ∈ Ring )
19 2 ply1sca ( 𝐴 ∈ Ring → 𝐴 = ( Scalar ‘ 𝑄 ) )
20 18 19 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → 𝐴 = ( Scalar ‘ 𝑄 ) )
21 simpl2 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring )
22 eqid ( 𝑁 Mat 𝑃 ) = ( 𝑁 Mat 𝑃 )
23 eqid ( Base ‘ ( 𝑁 Mat 𝑃 ) ) = ( Base ‘ ( 𝑁 Mat 𝑃 ) )
24 1 2 3 8 4 5 6 7 22 23 mply1topmatcl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝐼𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) )
25 24 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐼𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) )
26 simpr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 )
27 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
28 8 22 23 1 27 decpmatcl ( ( 𝑅 ∈ Ring ∧ ( 𝐼𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐼𝑂 ) decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) )
29 21 25 26 28 syl3anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐼𝑂 ) decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) )
30 eqid ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 )
31 2 11 30 10 3 ply1moncl ( ( 𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 𝑋 ) ∈ 𝐿 )
32 18 31 sylan ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 𝑋 ) ∈ 𝐿 )
33 eqid ( 0g𝑄 ) = ( 0g𝑄 )
34 eqid ( 0g𝐴 ) = ( 0g𝐴 )
35 fveq2 ( 𝑘 = 𝑙 → ( ( coe1𝑝 ) ‘ 𝑘 ) = ( ( coe1𝑝 ) ‘ 𝑙 ) )
36 35 oveqd ( 𝑘 = 𝑙 → ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) = ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑙 ) 𝑗 ) )
37 oveq1 ( 𝑘 = 𝑙 → ( 𝑘 𝐸 𝑌 ) = ( 𝑙 𝐸 𝑌 ) )
38 36 37 oveq12d ( 𝑘 = 𝑙 → ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) = ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑙 ) 𝑗 ) · ( 𝑙 𝐸 𝑌 ) ) )
39 38 cbvmptv ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑙 ) 𝑗 ) · ( 𝑙 𝐸 𝑌 ) ) )
40 39 oveq2i ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑙 ) 𝑗 ) · ( 𝑙 𝐸 𝑌 ) ) ) )
41 40 a1i ( ( 𝑖𝑁𝑗𝑁 ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑙 ) 𝑗 ) · ( 𝑙 𝐸 𝑌 ) ) ) ) )
42 41 mpoeq3ia ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑙 ) 𝑗 ) · ( 𝑙 𝐸 𝑌 ) ) ) ) )
43 42 mpteq2i ( 𝑝𝐿 ↦ ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) = ( 𝑝𝐿 ↦ ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑙 ) 𝑗 ) · ( 𝑙 𝐸 𝑌 ) ) ) ) ) )
44 7 43 eqtri 𝐼 = ( 𝑝𝐿 ↦ ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑙 ) 𝑗 ) · ( 𝑙 𝐸 𝑌 ) ) ) ) ) )
45 1 2 3 4 5 6 44 8 mp2pm2mplem4 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐼𝑂 ) decompPMat 𝑘 ) = ( ( coe1𝑂 ) ‘ 𝑘 ) )
46 45 mpteq2dva ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐼𝑂 ) decompPMat 𝑘 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( coe1𝑂 ) ‘ 𝑘 ) ) )
47 2 3 34 mptcoe1fsupp ( ( 𝐴 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( coe1𝑂 ) ‘ 𝑘 ) ) finSupp ( 0g𝐴 ) )
48 14 47 stoic3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( coe1𝑂 ) ‘ 𝑘 ) ) finSupp ( 0g𝐴 ) )
49 46 48 eqbrtrd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐼𝑂 ) decompPMat 𝑘 ) ) finSupp ( 0g𝐴 ) )
50 13 17 20 3 29 32 33 34 9 49 mptscmfsupp0 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) finSupp ( 0g𝑄 ) )