| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mp2pm2mp.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mp2pm2mp.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 3 |  | mp2pm2mp.l | ⊢ 𝐿  =  ( Base ‘ 𝑄 ) | 
						
							| 4 |  | mp2pm2mp.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 5 |  | mp2pm2mp.e | ⊢ 𝐸  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | mp2pm2mp.y | ⊢ 𝑌  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | mp2pm2mp.i | ⊢ 𝐼  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) | 
						
							| 8 |  | mp2pm2mplem2.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 9 |  | mp2pm2mplem5.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 10 |  | mp2pm2mplem5.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 11 |  | mp2pm2mplem5.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 12 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ℕ0  ∈  V ) | 
						
							| 14 | 1 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 15 | 2 | ply1lmod | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  LMod ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  LMod ) | 
						
							| 17 | 16 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑄  ∈  LMod ) | 
						
							| 18 | 14 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝐴  ∈  Ring ) | 
						
							| 19 | 2 | ply1sca | ⊢ ( 𝐴  ∈  Ring  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 21 |  | simpl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑘  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 22 |  | eqid | ⊢ ( 𝑁  Mat  𝑃 )  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ ( 𝑁  Mat  𝑃 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑃 ) ) | 
						
							| 24 | 1 2 3 8 4 5 6 7 22 23 | mply1topmatcl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝐼 ‘ 𝑂 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐼 ‘ 𝑂 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) ) ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 27 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 28 | 8 22 23 1 27 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐼 ‘ 𝑂 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 29 | 21 25 26 28 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 30 |  | eqid | ⊢ ( mulGrp ‘ 𝑄 )  =  ( mulGrp ‘ 𝑄 ) | 
						
							| 31 | 2 11 30 10 3 | ply1moncl | ⊢ ( ( 𝐴  ∈  Ring  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ↑  𝑋 )  ∈  𝐿 ) | 
						
							| 32 | 18 31 | sylan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ↑  𝑋 )  ∈  𝐿 ) | 
						
							| 33 |  | eqid | ⊢ ( 0g ‘ 𝑄 )  =  ( 0g ‘ 𝑄 ) | 
						
							| 34 |  | eqid | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑘  =  𝑙  →  ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 )  =  ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) ) | 
						
							| 36 | 35 | oveqd | ⊢ ( 𝑘  =  𝑙  →  ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 ) ) | 
						
							| 37 |  | oveq1 | ⊢ ( 𝑘  =  𝑙  →  ( 𝑘 𝐸 𝑌 )  =  ( 𝑙 𝐸 𝑌 ) ) | 
						
							| 38 | 36 37 | oveq12d | ⊢ ( 𝑘  =  𝑙  →  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 )  ·  ( 𝑙 𝐸 𝑌 ) ) ) | 
						
							| 39 | 38 | cbvmptv | ⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) )  =  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 )  ·  ( 𝑙 𝐸 𝑌 ) ) ) | 
						
							| 40 | 39 | oveq2i | ⊢ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) )  =  ( 𝑃  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 )  ·  ( 𝑙 𝐸 𝑌 ) ) ) ) | 
						
							| 41 | 40 | a1i | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) )  =  ( 𝑃  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 )  ·  ( 𝑙 𝐸 𝑌 ) ) ) ) ) | 
						
							| 42 | 41 | mpoeq3ia | ⊢ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 )  ·  ( 𝑙 𝐸 𝑌 ) ) ) ) ) | 
						
							| 43 | 42 | mpteq2i | ⊢ ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) )  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 )  ·  ( 𝑙 𝐸 𝑌 ) ) ) ) ) ) | 
						
							| 44 | 7 43 | eqtri | ⊢ 𝐼  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 )  ·  ( 𝑙 𝐸 𝑌 ) ) ) ) ) ) | 
						
							| 45 | 1 2 3 4 5 6 44 8 | mp2pm2mplem4 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑘 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) ) | 
						
							| 46 | 45 | mpteq2dva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑘 ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) ) ) | 
						
							| 47 | 2 3 34 | mptcoe1fsupp | ⊢ ( ( 𝐴  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 48 | 14 47 | stoic3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 49 | 46 48 | eqbrtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 50 | 13 17 20 3 29 32 33 34 9 49 | mptscmfsupp0 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) |