| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mp2pm2mp.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mp2pm2mp.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 3 |  | mp2pm2mp.l | ⊢ 𝐿  =  ( Base ‘ 𝑄 ) | 
						
							| 4 |  | mp2pm2mp.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 5 |  | mp2pm2mp.e | ⊢ 𝐸  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | mp2pm2mp.y | ⊢ 𝑌  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | mp2pm2mp.i | ⊢ 𝐼  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) | 
						
							| 8 |  | mp2pm2mplem2.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 9 |  | mp2pm2mp.t | ⊢ 𝑇  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑁  Mat  𝑃 )  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ ( 𝑁  Mat  𝑃 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑃 ) ) | 
						
							| 12 | 1 2 3 8 4 5 6 7 10 11 | mply1topmatcl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝐼 ‘ 𝑂 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) ) ) | 
						
							| 13 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑄 )  =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 14 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑄 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 15 |  | eqid | ⊢ ( var1 ‘ 𝐴 )  =  ( var1 ‘ 𝐴 ) | 
						
							| 16 | 8 10 11 13 14 15 1 2 9 | pm2mpfval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝐼 ‘ 𝑂 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) ) )  →  ( 𝑇 ‘ ( 𝐼 ‘ 𝑂 ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 17 | 12 16 | syld3an3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑇 ‘ ( 𝐼 ‘ 𝑂 ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 18 | 1 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 19 | 18 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝐴  ∈  Ring ) | 
						
							| 20 |  | eqid | ⊢ ( 0g ‘ 𝑄 )  =  ( 0g ‘ 𝑄 ) | 
						
							| 21 | 2 | ply1ring | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  Ring ) | 
						
							| 22 |  | ringcmn | ⊢ ( 𝑄  ∈  Ring  →  𝑄  ∈  CMnd ) | 
						
							| 23 | 18 21 22 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  CMnd ) | 
						
							| 24 | 23 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑄  ∈  CMnd ) | 
						
							| 25 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 26 | 25 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ℕ0  ∈  V ) | 
						
							| 27 | 19 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  𝐴  ∈  Ring ) | 
						
							| 28 |  | simpl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 29 | 12 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐼 ‘ 𝑂 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) ) ) | 
						
							| 30 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 32 | 8 10 11 1 31 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐼 ‘ 𝑂 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 33 | 28 29 30 32 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 34 |  | eqid | ⊢ ( mulGrp ‘ 𝑄 )  =  ( mulGrp ‘ 𝑄 ) | 
						
							| 35 | 31 2 15 13 34 14 3 | ply1tmcl | ⊢ ( ( 𝐴  ∈  Ring  ∧  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 )  ∈  ( Base ‘ 𝐴 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  ∈  𝐿 ) | 
						
							| 36 | 27 33 30 35 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  ∈  𝐿 ) | 
						
							| 37 | 36 | fmpttd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ 𝐿 ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 )  =  ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) ) | 
						
							| 39 | 38 | oveqd | ⊢ ( 𝑘  =  𝑛  →  ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) ) | 
						
							| 40 |  | oveq1 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑘 𝐸 𝑌 )  =  ( 𝑛 𝐸 𝑌 ) ) | 
						
							| 41 | 39 40 | oveq12d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 )  ·  ( 𝑛 𝐸 𝑌 ) ) ) | 
						
							| 42 | 41 | cbvmptv | ⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 )  ·  ( 𝑛 𝐸 𝑌 ) ) ) | 
						
							| 43 | 42 | a1i | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 )  ·  ( 𝑛 𝐸 𝑌 ) ) ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 )  ·  ( 𝑛 𝐸 𝑌 ) ) ) ) ) | 
						
							| 45 | 44 | mpoeq3ia | ⊢ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 )  ·  ( 𝑛 𝐸 𝑌 ) ) ) ) ) | 
						
							| 46 | 45 | mpteq2i | ⊢ ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) )  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 )  ·  ( 𝑛 𝐸 𝑌 ) ) ) ) ) ) | 
						
							| 47 | 7 46 | eqtri | ⊢ 𝐼  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 )  ·  ( 𝑛 𝐸 𝑌 ) ) ) ) ) ) | 
						
							| 48 | 1 2 3 4 5 6 47 8 13 14 15 | mp2pm2mplem5 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) | 
						
							| 49 | 3 20 24 26 37 48 | gsumcl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  𝐿 ) | 
						
							| 50 |  | simp3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑂  ∈  𝐿 ) | 
						
							| 51 | 19 49 50 | 3jca | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝐴  ∈  Ring  ∧  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  𝐿  ∧  𝑂  ∈  𝐿 ) ) | 
						
							| 52 | 1 2 3 4 5 6 7 8 | mp2pm2mplem4 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ) | 
						
							| 53 | 52 | oveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  =  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) | 
						
							| 54 | 53 | adantlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  =  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) | 
						
							| 55 | 54 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) | 
						
							| 56 | 55 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 57 | 56 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  =  ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) | 
						
							| 58 | 57 | fveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 )  =  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ) | 
						
							| 59 | 19 50 | jca | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝐴  ∈  Ring  ∧  𝑂  ∈  𝐿 ) ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( 𝐴  ∈  Ring  ∧  𝑂  ∈  𝐿 ) ) | 
						
							| 61 |  | eqid | ⊢ ( coe1 ‘ 𝑂 )  =  ( coe1 ‘ 𝑂 ) | 
						
							| 62 | 2 15 3 13 34 14 61 | ply1coe | ⊢ ( ( 𝐴  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑂  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 63 | 60 62 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  𝑂  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 64 | 63 | eqcomd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  𝑂 ) | 
						
							| 65 | 64 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  =  ( coe1 ‘ 𝑂 ) ) | 
						
							| 66 | 65 | fveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 ) ) | 
						
							| 67 | 58 66 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 ) ) | 
						
							| 68 | 67 | ralrimiva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ∀ 𝑙  ∈  ℕ0 ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 ) ) | 
						
							| 69 |  | eqid | ⊢ ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  =  ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 70 | 2 3 69 61 | eqcoe1ply1eq | ⊢ ( ( 𝐴  ∈  Ring  ∧  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  𝐿  ∧  𝑂  ∈  𝐿 )  →  ( ∀ 𝑙  ∈  ℕ0 ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 )  →  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  𝑂 ) ) | 
						
							| 71 | 51 68 70 | sylc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  𝑂 ) | 
						
							| 72 | 17 71 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑇 ‘ ( 𝐼 ‘ 𝑂 ) )  =  𝑂 ) |