| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mp2pm2mp.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
mp2pm2mp.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
| 3 |
|
mp2pm2mp.l |
⊢ 𝐿 = ( Base ‘ 𝑄 ) |
| 4 |
|
mp2pm2mp.m |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
| 5 |
|
mp2pm2mp.e |
⊢ 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 6 |
|
mp2pm2mp.y |
⊢ 𝑌 = ( var1 ‘ 𝑅 ) |
| 7 |
|
mp2pm2mp.i |
⊢ 𝐼 = ( 𝑝 ∈ 𝐿 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) |
| 8 |
|
mp2pm2mplem2.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 9 |
|
mp2pm2mp.t |
⊢ 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 ) |
| 10 |
|
eqid |
⊢ ( 𝑁 Mat 𝑃 ) = ( 𝑁 Mat 𝑃 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) = ( Base ‘ ( 𝑁 Mat 𝑃 ) ) |
| 12 |
1 2 3 8 4 5 6 7 10 11
|
mply1topmatcl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝐼 ‘ 𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ) |
| 13 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑄 ) = ( ·𝑠 ‘ 𝑄 ) |
| 14 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑄 ) ) = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
| 15 |
|
eqid |
⊢ ( var1 ‘ 𝐴 ) = ( var1 ‘ 𝐴 ) |
| 16 |
8 10 11 13 14 15 1 2 9
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝐼 ‘ 𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ) → ( 𝑇 ‘ ( 𝐼 ‘ 𝑂 ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
| 17 |
12 16
|
syld3an3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑇 ‘ ( 𝐼 ‘ 𝑂 ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
| 18 |
1
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 19 |
18
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝐴 ∈ Ring ) |
| 20 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
| 21 |
2
|
ply1ring |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ Ring ) |
| 22 |
|
ringcmn |
⊢ ( 𝑄 ∈ Ring → 𝑄 ∈ CMnd ) |
| 23 |
18 21 22
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ CMnd ) |
| 24 |
23
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑄 ∈ CMnd ) |
| 25 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 26 |
25
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ℕ0 ∈ V ) |
| 27 |
19
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐴 ∈ Ring ) |
| 28 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 29 |
12
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐼 ‘ 𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ) |
| 30 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 31 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 32 |
8 10 11 1 31
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 ‘ 𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ∈ ( Base ‘ 𝐴 ) ) |
| 33 |
28 29 30 32
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ∈ ( Base ‘ 𝐴 ) ) |
| 34 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
| 35 |
31 2 15 13 34 14 3
|
ply1tmcl |
⊢ ( ( 𝐴 ∈ Ring ∧ ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ∈ ( Base ‘ 𝐴 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ 𝐿 ) |
| 36 |
27 33 30 35
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ 𝐿 ) |
| 37 |
36
|
fmpttd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ 𝐿 ) |
| 38 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) ) |
| 39 |
38
|
oveqd |
⊢ ( 𝑘 = 𝑛 → ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) = ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) ) |
| 40 |
|
oveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 𝐸 𝑌 ) = ( 𝑛 𝐸 𝑌 ) ) |
| 41 |
39 40
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) = ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) |
| 42 |
41
|
cbvmptv |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) |
| 43 |
42
|
a1i |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) ) |
| 44 |
43
|
oveq2d |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) ) ) |
| 45 |
44
|
mpoeq3ia |
⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) ) ) |
| 46 |
45
|
mpteq2i |
⊢ ( 𝑝 ∈ 𝐿 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) = ( 𝑝 ∈ 𝐿 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) ) ) ) |
| 47 |
7 46
|
eqtri |
⊢ 𝐼 = ( 𝑝 ∈ 𝐿 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) ) ) ) |
| 48 |
1 2 3 4 5 6 47 8 13 14 15
|
mp2pm2mplem5 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
| 49 |
3 20 24 26 37 48
|
gsumcl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ 𝐿 ) |
| 50 |
|
simp3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑂 ∈ 𝐿 ) |
| 51 |
19 49 50
|
3jca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝐴 ∈ Ring ∧ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ 𝐿 ∧ 𝑂 ∈ 𝐿 ) ) |
| 52 |
1 2 3 4 5 6 7 8
|
mp2pm2mplem4 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ) |
| 53 |
52
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) = ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) |
| 54 |
53
|
adantlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) = ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) |
| 55 |
54
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) |
| 56 |
55
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
| 57 |
56
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) |
| 58 |
57
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ) |
| 59 |
19 50
|
jca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝐴 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) |
| 60 |
59
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝐴 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) |
| 61 |
|
eqid |
⊢ ( coe1 ‘ 𝑂 ) = ( coe1 ‘ 𝑂 ) |
| 62 |
2 15 3 13 34 14 61
|
ply1coe |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑂 = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
| 63 |
60 62
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → 𝑂 = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
| 64 |
63
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = 𝑂 ) |
| 65 |
64
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) = ( coe1 ‘ 𝑂 ) ) |
| 66 |
65
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 ) ) |
| 67 |
58 66
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 ) ) |
| 68 |
67
|
ralrimiva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ∀ 𝑙 ∈ ℕ0 ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 ) ) |
| 69 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
| 70 |
2 3 69 61
|
eqcoe1ply1eq |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ 𝐿 ∧ 𝑂 ∈ 𝐿 ) → ( ∀ 𝑙 ∈ ℕ0 ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = 𝑂 ) ) |
| 71 |
51 68 70
|
sylc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = 𝑂 ) |
| 72 |
17 71
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑇 ‘ ( 𝐼 ‘ 𝑂 ) ) = 𝑂 ) |