| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mp2pm2mp.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
mp2pm2mp.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
| 3 |
|
mp2pm2mp.l |
⊢ 𝐿 = ( Base ‘ 𝑄 ) |
| 4 |
|
mp2pm2mp.m |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
| 5 |
|
mp2pm2mp.e |
⊢ 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 6 |
|
mp2pm2mp.y |
⊢ 𝑌 = ( var1 ‘ 𝑅 ) |
| 7 |
|
mp2pm2mp.i |
⊢ 𝐼 = ( 𝑝 ∈ 𝐿 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) |
| 8 |
|
mp2pm2mplem2.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 9 |
1 2 3 4 5 6 7 8
|
mp2pm2mplem3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝐾 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 12 |
8
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 13 |
12
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑃 ∈ Ring ) |
| 14 |
|
ringcmn |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑃 ∈ CMnd ) |
| 16 |
15
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → 𝑃 ∈ CMnd ) |
| 17 |
16
|
3ad2ant1 |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑃 ∈ CMnd ) |
| 18 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 19 |
18
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → 𝑅 ∈ Ring ) |
| 20 |
19
|
3ad2ant1 |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 21 |
20
|
adantr |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 24 |
|
simpl2 |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑖 ∈ 𝑁 ) |
| 25 |
|
simpl3 |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑗 ∈ 𝑁 ) |
| 26 |
|
simpl3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑂 ∈ 𝐿 ) |
| 27 |
26
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → 𝑂 ∈ 𝐿 ) |
| 28 |
27
|
3ad2ant1 |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑂 ∈ 𝐿 ) |
| 29 |
|
eqid |
⊢ ( coe1 ‘ 𝑂 ) = ( coe1 ‘ 𝑂 ) |
| 30 |
29 3 2 23
|
coe1fvalcl |
⊢ ( ( 𝑂 ∈ 𝐿 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 31 |
28 30
|
sylan |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 32 |
1 22 23 24 25 31
|
matecld |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 33 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 34 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 35 |
22 8 6 4 34 5 10
|
ply1tmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 36 |
21 32 33 35
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 37 |
36
|
ralrimiva |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ∀ 𝑘 ∈ ℕ0 ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 38 |
|
simp1lr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑠 ∈ ℕ0 ) |
| 39 |
|
oveq |
⊢ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) → ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 ) = ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 ) ) |
| 40 |
39
|
oveq1d |
⊢ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 ) · ( 𝑥 𝐸 𝑌 ) ) = ( ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 ) · ( 𝑥 𝐸 𝑌 ) ) ) |
| 41 |
|
3simpa |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 42 |
41
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 43 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 44 |
1 43
|
mat0op |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐴 ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
| 45 |
42 44
|
syl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 0g ‘ 𝐴 ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
| 46 |
|
eqidd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑎 = 𝑖 ∧ 𝑏 = 𝑗 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
| 47 |
|
simprl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑖 ∈ 𝑁 ) |
| 48 |
|
simprr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑗 ∈ 𝑁 ) |
| 49 |
|
fvexd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 50 |
45 46 47 48 49
|
ovmpod |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 ) = ( 0g ‘ 𝑅 ) ) |
| 52 |
51
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 ) · ( 𝑥 𝐸 𝑌 ) ) = ( ( 0g ‘ 𝑅 ) · ( 𝑥 𝐸 𝑌 ) ) ) |
| 53 |
18
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑥 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 54 |
8
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 55 |
53 54
|
syl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑥 ∈ ℕ0 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 56 |
55
|
fveq2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 57 |
56
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 0g ‘ 𝑅 ) · ( 𝑥 𝐸 𝑌 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑥 𝐸 𝑌 ) ) ) |
| 58 |
8
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 59 |
58
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑃 ∈ LMod ) |
| 60 |
59
|
ad4antr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑥 ∈ ℕ0 ) → 𝑃 ∈ LMod ) |
| 61 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑥 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 ) |
| 62 |
8 6 34 5 10
|
ply1moncl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 𝐸 𝑌 ) ∈ ( Base ‘ 𝑃 ) ) |
| 63 |
53 61 62
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 𝐸 𝑌 ) ∈ ( Base ‘ 𝑃 ) ) |
| 64 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 65 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) |
| 66 |
10 64 4 65 11
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑥 𝐸 𝑌 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑥 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) |
| 67 |
60 63 66
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑥 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) |
| 68 |
52 57 67
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 ) · ( 𝑥 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) |
| 69 |
68
|
adantr |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑠 < 𝑥 ) → ( ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 ) · ( 𝑥 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) |
| 70 |
40 69
|
sylan9eqr |
⊢ ( ( ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑠 < 𝑥 ) ∧ ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 ) · ( 𝑥 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) |
| 71 |
70
|
exp31 |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑠 < 𝑥 → ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 ) · ( 𝑥 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 72 |
71
|
a2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ( 𝑠 < 𝑥 → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 ) · ( 𝑥 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 73 |
72
|
ralimdva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 ) · ( 𝑥 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 74 |
73
|
impancom |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 ) · ( 𝑥 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 75 |
74
|
3impib |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 ) · ( 𝑥 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 76 |
|
breq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑠 < 𝑘 ↔ 𝑠 < 𝑥 ) ) |
| 77 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) ) |
| 78 |
77
|
oveqd |
⊢ ( 𝑘 = 𝑥 → ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) = ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 ) ) |
| 79 |
|
oveq1 |
⊢ ( 𝑘 = 𝑥 → ( 𝑘 𝐸 𝑌 ) = ( 𝑥 𝐸 𝑌 ) ) |
| 80 |
78 79
|
oveq12d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) = ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 ) · ( 𝑥 𝐸 𝑌 ) ) ) |
| 81 |
80
|
eqeq1d |
⊢ ( 𝑘 = 𝑥 → ( ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ↔ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 ) · ( 𝑥 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 82 |
76 81
|
imbi12d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝑠 < 𝑘 → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) ↔ ( 𝑠 < 𝑥 → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 ) · ( 𝑥 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 83 |
82
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ℕ0 ( 𝑠 < 𝑘 → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 ) · ( 𝑥 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 84 |
75 83
|
sylibr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ∀ 𝑘 ∈ ℕ0 ( 𝑠 < 𝑘 → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 85 |
10 11 17 37 38 84
|
gsummptnn0fz |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) |
| 86 |
85
|
fveq2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) |
| 87 |
86
|
fveq1d |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) |
| 88 |
|
simpllr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → 𝐾 ∈ ℕ0 ) |
| 89 |
88
|
3ad2ant1 |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝐾 ∈ ℕ0 ) |
| 90 |
36
|
expcom |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 91 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) → 𝑘 ∈ ℕ0 ) |
| 92 |
90 91
|
syl11 |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 93 |
92
|
ralrimiv |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ∀ 𝑘 ∈ ( 0 ... 𝑠 ) ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 94 |
|
fzfid |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 0 ... 𝑠 ) ∈ Fin ) |
| 95 |
8 10 20 89 93 94
|
coe1fzgsumd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) ) |
| 96 |
87 95
|
eqtrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) ) |
| 97 |
96
|
mpoeq3dva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) ) ) |
| 98 |
18
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 99 |
98
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 𝑅 ∈ Ring ) |
| 100 |
|
simpl2 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 𝑖 ∈ 𝑁 ) |
| 101 |
|
simpl3 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 𝑗 ∈ 𝑁 ) |
| 102 |
26
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑂 ∈ 𝐿 ) |
| 103 |
102 91 30
|
syl2an |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 104 |
1 22 23 100 101 103
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 105 |
91
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 𝑘 ∈ ℕ0 ) |
| 106 |
43 22 8 6 4 34 5
|
coe1tm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑘 ∈ ℕ0 ) → ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 107 |
99 104 105 106
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 108 |
|
eqeq1 |
⊢ ( 𝑙 = 𝐾 → ( 𝑙 = 𝑘 ↔ 𝐾 = 𝑘 ) ) |
| 109 |
108
|
ifbid |
⊢ ( 𝑙 = 𝐾 → if ( 𝑙 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) |
| 110 |
109
|
adantl |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) ∧ 𝑙 = 𝐾 ) → if ( 𝑙 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) |
| 111 |
|
simpl1r |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 𝐾 ∈ ℕ0 ) |
| 112 |
|
ovex |
⊢ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ∈ V |
| 113 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
| 114 |
112 113
|
ifex |
⊢ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ∈ V |
| 115 |
114
|
a1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ∈ V ) |
| 116 |
107 110 111 115
|
fvmptd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) = if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) |
| 117 |
116
|
mpteq2dva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) = ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 118 |
117
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 119 |
118
|
mpoeq3dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) |
| 120 |
119
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) |
| 121 |
|
breq2 |
⊢ ( 𝑥 = 𝐾 → ( 𝑠 < 𝑥 ↔ 𝑠 < 𝐾 ) ) |
| 122 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝐾 → ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ↔ ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) ) |
| 123 |
121 122
|
imbi12d |
⊢ ( 𝑥 = 𝐾 → ( ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ↔ ( 𝑠 < 𝐾 → ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) ) ) |
| 124 |
123
|
rspcva |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → ( 𝑠 < 𝐾 → ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) ) |
| 125 |
1 43
|
mat0op |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
| 126 |
125
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝐴 ) ) |
| 127 |
126
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝐴 ) ) |
| 128 |
127
|
ad3antlr |
⊢ ( ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) ) ∧ ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝐴 ) ) |
| 129 |
|
elfz2nn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) ↔ ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 𝑘 ≤ 𝑠 ) ) |
| 130 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
| 131 |
130
|
ad2antrr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑘 ∈ ℝ ) |
| 132 |
|
nn0re |
⊢ ( 𝑠 ∈ ℕ0 → 𝑠 ∈ ℝ ) |
| 133 |
132
|
ad2antlr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑠 ∈ ℝ ) |
| 134 |
|
nn0re |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) |
| 135 |
134
|
adantl |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℝ ) |
| 136 |
|
lelttr |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( ( 𝑘 ≤ 𝑠 ∧ 𝑠 < 𝐾 ) → 𝑘 < 𝐾 ) ) |
| 137 |
131 133 135 136
|
syl3anc |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑘 ≤ 𝑠 ∧ 𝑠 < 𝐾 ) → 𝑘 < 𝐾 ) ) |
| 138 |
|
animorr |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 < 𝐾 ) → ( 𝐾 < 𝑘 ∨ 𝑘 < 𝐾 ) ) |
| 139 |
|
df-ne |
⊢ ( 𝐾 ≠ 𝑘 ↔ ¬ 𝐾 = 𝑘 ) |
| 140 |
130
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → 𝑘 ∈ ℝ ) |
| 141 |
|
lttri2 |
⊢ ( ( 𝐾 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝐾 ≠ 𝑘 ↔ ( 𝐾 < 𝑘 ∨ 𝑘 < 𝐾 ) ) ) |
| 142 |
134 140 141
|
syl2anr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 ≠ 𝑘 ↔ ( 𝐾 < 𝑘 ∨ 𝑘 < 𝐾 ) ) ) |
| 143 |
142
|
adantr |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 < 𝐾 ) → ( 𝐾 ≠ 𝑘 ↔ ( 𝐾 < 𝑘 ∨ 𝑘 < 𝐾 ) ) ) |
| 144 |
139 143
|
bitr3id |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 < 𝐾 ) → ( ¬ 𝐾 = 𝑘 ↔ ( 𝐾 < 𝑘 ∨ 𝑘 < 𝐾 ) ) ) |
| 145 |
138 144
|
mpbird |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 < 𝐾 ) → ¬ 𝐾 = 𝑘 ) |
| 146 |
145
|
ex |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑘 < 𝐾 → ¬ 𝐾 = 𝑘 ) ) |
| 147 |
137 146
|
syld |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑘 ≤ 𝑠 ∧ 𝑠 < 𝐾 ) → ¬ 𝐾 = 𝑘 ) ) |
| 148 |
147
|
exp4b |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( 𝐾 ∈ ℕ0 → ( 𝑘 ≤ 𝑠 → ( 𝑠 < 𝐾 → ¬ 𝐾 = 𝑘 ) ) ) ) |
| 149 |
148
|
com24 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( 𝑠 < 𝐾 → ( 𝑘 ≤ 𝑠 → ( 𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘 ) ) ) ) |
| 150 |
149
|
expimpd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) → ( 𝑘 ≤ 𝑠 → ( 𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘 ) ) ) ) |
| 151 |
150
|
com23 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 ≤ 𝑠 → ( ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) → ( 𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘 ) ) ) ) |
| 152 |
151
|
imp |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑘 ≤ 𝑠 ) → ( ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) → ( 𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘 ) ) ) |
| 153 |
152
|
3adant2 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 𝑘 ≤ 𝑠 ) → ( ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) → ( 𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘 ) ) ) |
| 154 |
129 153
|
sylbi |
⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) → ( ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) → ( 𝐾 ∈ ℕ0 → ¬ 𝐾 = 𝑘 ) ) ) |
| 155 |
154
|
com13 |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ¬ 𝐾 = 𝑘 ) ) ) |
| 156 |
155
|
adantr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) → ( ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ¬ 𝐾 = 𝑘 ) ) ) |
| 157 |
156
|
imp |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ¬ 𝐾 = 𝑘 ) ) |
| 158 |
157
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) ) ∧ ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ¬ 𝐾 = 𝑘 ) ) |
| 159 |
158
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) ) ∧ ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ¬ 𝐾 = 𝑘 ) ) |
| 160 |
159
|
imp |
⊢ ( ( ( ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) ) ∧ ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ¬ 𝐾 = 𝑘 ) |
| 161 |
160
|
iffalsed |
⊢ ( ( ( ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) ) ∧ ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 162 |
161
|
mpteq2dva |
⊢ ( ( ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) ) ∧ ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( 0g ‘ 𝑅 ) ) ) |
| 163 |
162
|
oveq2d |
⊢ ( ( ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) ) ∧ ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( 0g ‘ 𝑅 ) ) ) ) |
| 164 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
| 165 |
164
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑅 ∈ Mnd ) |
| 166 |
|
ovex |
⊢ ( 0 ... 𝑠 ) ∈ V |
| 167 |
43
|
gsumz |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 0 ... 𝑠 ) ∈ V ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 168 |
165 166 167
|
sylancl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 169 |
168
|
ad3antlr |
⊢ ( ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) ) ∧ ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 170 |
169
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) ) ∧ ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( 0g ‘ 𝑅 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 171 |
163 170
|
eqtrd |
⊢ ( ( ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) ) ∧ ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 172 |
171
|
mpoeq3dva |
⊢ ( ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) ) ∧ ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
| 173 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) ) ∧ ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) → ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) |
| 174 |
128 172 173
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) ) ∧ ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) |
| 175 |
174
|
ex |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐾 ) ) → ( ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) |
| 176 |
175
|
expr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ 𝑠 ∈ ℕ0 ) → ( 𝑠 < 𝐾 → ( ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) |
| 177 |
176
|
a2d |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) ∧ 𝑠 ∈ ℕ0 ) → ( ( 𝑠 < 𝐾 → ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) → ( 𝑠 < 𝐾 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) |
| 178 |
177
|
exp31 |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑠 ∈ ℕ0 → ( ( 𝑠 < 𝐾 → ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) → ( 𝑠 < 𝐾 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) ) |
| 179 |
178
|
com14 |
⊢ ( ( 𝑠 < 𝐾 → ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) = ( 0g ‘ 𝐴 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑠 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( 𝑠 < 𝐾 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) ) |
| 180 |
124 179
|
syl |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑠 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( 𝑠 < 𝐾 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) ) |
| 181 |
180
|
ex |
⊢ ( 𝐾 ∈ ℕ0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑠 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( 𝑠 < 𝐾 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) ) ) |
| 182 |
181
|
com25 |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑠 ∈ ℕ0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ( 𝑠 < 𝐾 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) ) ) |
| 183 |
182
|
pm2.43i |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑠 ∈ ℕ0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ( 𝑠 < 𝐾 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) ) |
| 184 |
183
|
impcom |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑠 ∈ ℕ0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ( 𝑠 < 𝐾 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) |
| 185 |
184
|
imp31 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → ( 𝑠 < 𝐾 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) |
| 186 |
185
|
com12 |
⊢ ( 𝑠 < 𝐾 → ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) |
| 187 |
165
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → 𝑅 ∈ Mnd ) |
| 188 |
187
|
adantl |
⊢ ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) → 𝑅 ∈ Mnd ) |
| 189 |
188
|
3ad2ant1 |
⊢ ( ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Mnd ) |
| 190 |
|
ovexd |
⊢ ( ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 0 ... 𝑠 ) ∈ V ) |
| 191 |
|
lenlt |
⊢ ( ( 𝐾 ∈ ℝ ∧ 𝑠 ∈ ℝ ) → ( 𝐾 ≤ 𝑠 ↔ ¬ 𝑠 < 𝐾 ) ) |
| 192 |
134 132 191
|
syl2an |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( 𝐾 ≤ 𝑠 ↔ ¬ 𝑠 < 𝐾 ) ) |
| 193 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐾 ≤ 𝑠 ) → 𝐾 ∈ ℕ0 ) |
| 194 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐾 ≤ 𝑠 ) → 𝑠 ∈ ℕ0 ) |
| 195 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐾 ≤ 𝑠 ) → 𝐾 ≤ 𝑠 ) |
| 196 |
|
elfz2nn0 |
⊢ ( 𝐾 ∈ ( 0 ... 𝑠 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 𝐾 ≤ 𝑠 ) ) |
| 197 |
193 194 195 196
|
syl3anbrc |
⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐾 ≤ 𝑠 ) → 𝐾 ∈ ( 0 ... 𝑠 ) ) |
| 198 |
197
|
ex |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( 𝐾 ≤ 𝑠 → 𝐾 ∈ ( 0 ... 𝑠 ) ) ) |
| 199 |
192 198
|
sylbird |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ¬ 𝑠 < 𝐾 → 𝐾 ∈ ( 0 ... 𝑠 ) ) ) |
| 200 |
199
|
ad4ant23 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → ( ¬ 𝑠 < 𝐾 → 𝐾 ∈ ( 0 ... 𝑠 ) ) ) |
| 201 |
200
|
impcom |
⊢ ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) → 𝐾 ∈ ( 0 ... 𝑠 ) ) |
| 202 |
201
|
3ad2ant1 |
⊢ ( ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝐾 ∈ ( 0 ... 𝑠 ) ) |
| 203 |
|
eqcom |
⊢ ( 𝐾 = 𝑘 ↔ 𝑘 = 𝐾 ) |
| 204 |
|
ifbi |
⊢ ( ( 𝐾 = 𝑘 ↔ 𝑘 = 𝐾 ) → if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑘 = 𝐾 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) |
| 205 |
203 204
|
ax-mp |
⊢ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑘 = 𝐾 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) |
| 206 |
205
|
mpteq2i |
⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝑘 = 𝐾 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) |
| 207 |
|
simpl2 |
⊢ ( ( ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑖 ∈ 𝑁 ) |
| 208 |
|
simpl3 |
⊢ ( ( ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑗 ∈ 𝑁 ) |
| 209 |
27
|
adantl |
⊢ ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) → 𝑂 ∈ 𝐿 ) |
| 210 |
209
|
3ad2ant1 |
⊢ ( ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑂 ∈ 𝐿 ) |
| 211 |
210 30
|
sylan |
⊢ ( ( ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 212 |
1 22 23 207 208 211
|
matecld |
⊢ ( ( ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 213 |
91 212
|
sylan2 |
⊢ ( ( ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 214 |
213
|
ralrimiva |
⊢ ( ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ∀ 𝑘 ∈ ( 0 ... 𝑠 ) ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 215 |
43 189 190 202 206 214
|
gsummpt1n0 |
⊢ ( ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) = ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) |
| 216 |
215
|
mpoeq3dva |
⊢ ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) ) |
| 217 |
|
csbov |
⊢ ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) = ( 𝑖 ⦋ 𝐾 / 𝑘 ⦌ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) |
| 218 |
|
csbfv |
⊢ ⦋ 𝐾 / 𝑘 ⦌ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) |
| 219 |
218
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → ⦋ 𝐾 / 𝑘 ⦌ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) |
| 220 |
219
|
oveqd |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝑖 ⦋ 𝐾 / 𝑘 ⦌ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) = ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) ) |
| 221 |
217 220
|
eqtrid |
⊢ ( 𝐾 ∈ ℕ0 → ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) = ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) ) |
| 222 |
221
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) = ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) ) |
| 223 |
222
|
mpoeq3dv |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) ) ) |
| 224 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) = ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) ) |
| 225 |
224
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) ) → ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) = ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) ) |
| 226 |
|
simprl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑎 ∈ 𝑁 ) |
| 227 |
|
simprr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑏 ∈ 𝑁 ) |
| 228 |
|
ovexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) ∈ V ) |
| 229 |
223 225 226 227 228
|
ovmpod |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) 𝑏 ) = ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) ) |
| 230 |
229
|
ralrimivva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) 𝑏 ) = ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) ) |
| 231 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑁 ∈ Fin ) |
| 232 |
218
|
oveqi |
⊢ ( 𝑖 ⦋ 𝐾 / 𝑘 ⦌ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) = ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) |
| 233 |
217 232
|
eqtri |
⊢ ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) = ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) |
| 234 |
|
simp2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 235 |
|
simp3 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
| 236 |
29 3 2 23
|
coe1fvalcl |
⊢ ( ( 𝑂 ∈ 𝐿 ∧ 𝐾 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ∈ ( Base ‘ 𝐴 ) ) |
| 237 |
236
|
3ad2antl3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ∈ ( Base ‘ 𝐴 ) ) |
| 238 |
237
|
3ad2ant1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ∈ ( Base ‘ 𝐴 ) ) |
| 239 |
1 22 23 234 235 238
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 240 |
233 239
|
eqeltrid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 241 |
1 22 23 231 18 240
|
matbas2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 242 |
1 23
|
eqmat |
⊢ ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) ∈ ( Base ‘ 𝐴 ) ∧ ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ↔ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) 𝑏 ) = ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) ) ) |
| 243 |
241 237 242
|
syl2anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ↔ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) 𝑏 ) = ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) ) ) |
| 244 |
230 243
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) |
| 245 |
244
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) |
| 246 |
245
|
adantl |
⊢ ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ⦋ 𝐾 / 𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) |
| 247 |
216 246
|
eqtrd |
⊢ ( ( ¬ 𝑠 < 𝐾 ∧ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) |
| 248 |
247
|
ex |
⊢ ( ¬ 𝑠 < 𝐾 → ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) |
| 249 |
186 248
|
pm2.61i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐾 = 𝑘 , ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) |
| 250 |
97 120 249
|
3eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) |
| 251 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
| 252 |
29 3 2 251
|
coe1sfi |
⊢ ( 𝑂 ∈ 𝐿 → ( coe1 ‘ 𝑂 ) finSupp ( 0g ‘ 𝐴 ) ) |
| 253 |
26 252
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( coe1 ‘ 𝑂 ) finSupp ( 0g ‘ 𝐴 ) ) |
| 254 |
29 3 2 251 23
|
coe1fsupp |
⊢ ( 𝑂 ∈ 𝐿 → ( coe1 ‘ 𝑂 ) ∈ { 𝑥 ∈ ( ( Base ‘ 𝐴 ) ↑m ℕ0 ) ∣ 𝑥 finSupp ( 0g ‘ 𝐴 ) } ) |
| 255 |
|
elrabi |
⊢ ( ( coe1 ‘ 𝑂 ) ∈ { 𝑥 ∈ ( ( Base ‘ 𝐴 ) ↑m ℕ0 ) ∣ 𝑥 finSupp ( 0g ‘ 𝐴 ) } → ( coe1 ‘ 𝑂 ) ∈ ( ( Base ‘ 𝐴 ) ↑m ℕ0 ) ) |
| 256 |
26 254 255
|
3syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( coe1 ‘ 𝑂 ) ∈ ( ( Base ‘ 𝐴 ) ↑m ℕ0 ) ) |
| 257 |
|
fvex |
⊢ ( 0g ‘ 𝐴 ) ∈ V |
| 258 |
|
fsuppmapnn0ub |
⊢ ( ( ( coe1 ‘ 𝑂 ) ∈ ( ( Base ‘ 𝐴 ) ↑m ℕ0 ) ∧ ( 0g ‘ 𝐴 ) ∈ V ) → ( ( coe1 ‘ 𝑂 ) finSupp ( 0g ‘ 𝐴 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) |
| 259 |
256 257 258
|
sylancl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑂 ) finSupp ( 0g ‘ 𝐴 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) |
| 260 |
253 259
|
mpd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) |
| 261 |
250 260
|
r19.29a |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) |
| 262 |
9 261
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝐾 ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) |