| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mp2pm2mp.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mp2pm2mp.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 3 |  | mp2pm2mp.l | ⊢ 𝐿  =  ( Base ‘ 𝑄 ) | 
						
							| 4 |  | mp2pm2mp.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 5 |  | mp2pm2mp.e | ⊢ 𝐸  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | mp2pm2mp.y | ⊢ 𝑌  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | mp2pm2mp.i | ⊢ 𝐼  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) | 
						
							| 8 |  | mp2pm2mplem2.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | mp2pm2mplem3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝐾 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 12 | 8 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑃  ∈  Ring ) | 
						
							| 14 |  | ringcmn | ⊢ ( 𝑃  ∈  Ring  →  𝑃  ∈  CMnd ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑃  ∈  CMnd ) | 
						
							| 16 | 15 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  𝑃  ∈  CMnd ) | 
						
							| 17 | 16 | 3ad2ant1 | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑃  ∈  CMnd ) | 
						
							| 18 |  | simpl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 20 | 19 | 3ad2ant1 | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 24 |  | simpl2 | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑖  ∈  𝑁 ) | 
						
							| 25 |  | simpl3 | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑗  ∈  𝑁 ) | 
						
							| 26 |  | simpl3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  𝑂  ∈  𝐿 ) | 
						
							| 27 | 26 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  𝑂  ∈  𝐿 ) | 
						
							| 28 | 27 | 3ad2ant1 | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑂  ∈  𝐿 ) | 
						
							| 29 |  | eqid | ⊢ ( coe1 ‘ 𝑂 )  =  ( coe1 ‘ 𝑂 ) | 
						
							| 30 | 29 3 2 23 | coe1fvalcl | ⊢ ( ( 𝑂  ∈  𝐿  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 31 | 28 30 | sylan | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 32 | 1 22 23 24 25 31 | matecld | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 33 |  | simpr | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 34 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 35 | 22 8 6 4 34 5 10 | ply1tmcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 36 | 21 32 33 35 | syl3anc | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 37 | 36 | ralrimiva | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ∀ 𝑘  ∈  ℕ0 ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 38 |  | simp1lr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑠  ∈  ℕ0 ) | 
						
							| 39 |  | oveq | ⊢ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  =  ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 ) ) | 
						
							| 40 | 39 | oveq1d | ⊢ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) ) ) | 
						
							| 41 |  | 3simpa | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 42 | 41 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 43 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 44 | 1 43 | mat0op | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 0g ‘ 𝐴 )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 45 | 42 44 | syl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 0g ‘ 𝐴 )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 46 |  | eqidd | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑎  =  𝑖  ∧  𝑏  =  𝑗 ) )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 47 |  | simprl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑖  ∈  𝑁 ) | 
						
							| 48 |  | simprr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑗  ∈  𝑁 ) | 
						
							| 49 |  | fvexd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 50 | 45 46 47 48 49 | ovmpod | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( ( 0g ‘ 𝑅 )  ·  ( 𝑥 𝐸 𝑌 ) ) ) | 
						
							| 53 | 18 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 54 | 8 | ply1sca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 55 | 53 54 | syl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 56 | 55 | fveq2d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 57 | 56 | oveq1d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 0g ‘ 𝑅 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) )  ·  ( 𝑥 𝐸 𝑌 ) ) ) | 
						
							| 58 | 8 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 59 | 58 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑃  ∈  LMod ) | 
						
							| 60 | 59 | ad4antr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  𝑃  ∈  LMod ) | 
						
							| 61 |  | simpr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  𝑥  ∈  ℕ0 ) | 
						
							| 62 | 8 6 34 5 10 | ply1moncl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑥 𝐸 𝑌 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 63 | 53 61 62 | syl2anc | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑥 𝐸 𝑌 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 64 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 65 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 66 | 10 64 4 65 11 | lmod0vs | ⊢ ( ( 𝑃  ∈  LMod  ∧  ( 𝑥 𝐸 𝑌 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 67 | 60 63 66 | syl2anc | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 68 | 52 57 67 | 3eqtrd | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑠  <  𝑥 )  →  ( ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 70 | 40 69 | sylan9eqr | ⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑠  <  𝑥 )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 71 | 70 | exp31 | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑠  <  𝑥  →  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 72 | 71 | a2d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑠  <  𝑥  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 73 | 72 | ralimdva | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 74 | 73 | impancom | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 75 | 74 | 3impib | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 76 |  | breq2 | ⊢ ( 𝑘  =  𝑥  →  ( 𝑠  <  𝑘  ↔  𝑠  <  𝑥 ) ) | 
						
							| 77 |  | fveq2 | ⊢ ( 𝑘  =  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) ) | 
						
							| 78 | 77 | oveqd | ⊢ ( 𝑘  =  𝑥  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 ) ) | 
						
							| 79 |  | oveq1 | ⊢ ( 𝑘  =  𝑥  →  ( 𝑘 𝐸 𝑌 )  =  ( 𝑥 𝐸 𝑌 ) ) | 
						
							| 80 | 78 79 | oveq12d | ⊢ ( 𝑘  =  𝑥  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) ) ) | 
						
							| 81 | 80 | eqeq1d | ⊢ ( 𝑘  =  𝑥  →  ( ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 )  ↔  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 82 | 76 81 | imbi12d | ⊢ ( 𝑘  =  𝑥  →  ( ( 𝑠  <  𝑘  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ( 𝑠  <  𝑥  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 83 | 82 | cbvralvw | ⊢ ( ∀ 𝑘  ∈  ℕ0 ( 𝑠  <  𝑘  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 84 | 75 83 | sylibr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ∀ 𝑘  ∈  ℕ0 ( 𝑠  <  𝑘  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 85 | 10 11 17 37 38 84 | gsummptnn0fz | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) )  =  ( 𝑃  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) | 
						
							| 86 | 85 | fveq2d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  =  ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) | 
						
							| 87 | 86 | fveq1d | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) | 
						
							| 88 |  | simpllr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 89 | 88 | 3ad2ant1 | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 90 | 36 | expcom | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 91 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑠 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 92 | 90 91 | syl11 | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 93 | 92 | ralrimiv | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ∀ 𝑘  ∈  ( 0 ... 𝑠 ) ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 94 |  | fzfid | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 0 ... 𝑠 )  ∈  Fin ) | 
						
							| 95 | 8 10 20 89 93 94 | coe1fzgsumd | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 )  =  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) ) | 
						
							| 96 | 87 95 | eqtrd | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 )  =  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) ) | 
						
							| 97 | 96 | mpoeq3dva | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) ) ) | 
						
							| 98 | 18 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 99 | 98 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  𝑅  ∈  Ring ) | 
						
							| 100 |  | simpl2 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  𝑖  ∈  𝑁 ) | 
						
							| 101 |  | simpl3 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  𝑗  ∈  𝑁 ) | 
						
							| 102 | 26 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑂  ∈  𝐿 ) | 
						
							| 103 | 102 91 30 | syl2an | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 104 | 1 22 23 100 101 103 | matecld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 105 | 91 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 106 | 43 22 8 6 4 34 5 | coe1tm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑘  ∈  ℕ0 )  →  ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) )  =  ( 𝑙  ∈  ℕ0  ↦  if ( 𝑙  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 107 | 99 104 105 106 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) )  =  ( 𝑙  ∈  ℕ0  ↦  if ( 𝑙  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 108 |  | eqeq1 | ⊢ ( 𝑙  =  𝐾  →  ( 𝑙  =  𝑘  ↔  𝐾  =  𝑘 ) ) | 
						
							| 109 | 108 | ifbid | ⊢ ( 𝑙  =  𝐾  →  if ( 𝑙  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 110 | 109 | adantl | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  ∧  𝑙  =  𝐾 )  →  if ( 𝑙  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 111 |  | simpl1r | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 112 |  | ovex | ⊢ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  V | 
						
							| 113 |  | fvex | ⊢ ( 0g ‘ 𝑅 )  ∈  V | 
						
							| 114 | 112 113 | ifex | ⊢ if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  ∈  V | 
						
							| 115 | 114 | a1i | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  ∈  V ) | 
						
							| 116 | 107 110 111 115 | fvmptd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 )  =  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 117 | 116 | mpteq2dva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) )  =  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 118 | 117 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) )  =  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) | 
						
							| 119 | 118 | mpoeq3dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 120 | 119 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) ) | 
						
							| 121 |  | breq2 | ⊢ ( 𝑥  =  𝐾  →  ( 𝑠  <  𝑥  ↔  𝑠  <  𝐾 ) ) | 
						
							| 122 |  | fveqeq2 | ⊢ ( 𝑥  =  𝐾  →  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 )  ↔  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) ) ) | 
						
							| 123 | 121 122 | imbi12d | ⊢ ( 𝑥  =  𝐾  →  ( ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  ↔  ( 𝑠  <  𝐾  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) ) ) ) | 
						
							| 124 | 123 | rspcva | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑠  <  𝐾  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) ) ) | 
						
							| 125 | 1 43 | mat0op | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 0g ‘ 𝐴 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 126 | 125 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 127 | 126 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 128 | 127 | ad3antlr | ⊢ ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 129 |  | elfz2nn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑠 )  ↔  ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0  ∧  𝑘  ≤  𝑠 ) ) | 
						
							| 130 |  | nn0re | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℝ ) | 
						
							| 131 | 130 | ad2antrr | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  𝑘  ∈  ℝ ) | 
						
							| 132 |  | nn0re | ⊢ ( 𝑠  ∈  ℕ0  →  𝑠  ∈  ℝ ) | 
						
							| 133 | 132 | ad2antlr | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  𝑠  ∈  ℝ ) | 
						
							| 134 |  | nn0re | ⊢ ( 𝐾  ∈  ℕ0  →  𝐾  ∈  ℝ ) | 
						
							| 135 | 134 | adantl | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  𝐾  ∈  ℝ ) | 
						
							| 136 |  | lelttr | ⊢ ( ( 𝑘  ∈  ℝ  ∧  𝑠  ∈  ℝ  ∧  𝐾  ∈  ℝ )  →  ( ( 𝑘  ≤  𝑠  ∧  𝑠  <  𝐾 )  →  𝑘  <  𝐾 ) ) | 
						
							| 137 | 131 133 135 136 | syl3anc | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑘  ≤  𝑠  ∧  𝑠  <  𝐾 )  →  𝑘  <  𝐾 ) ) | 
						
							| 138 |  | animorr | ⊢ ( ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  <  𝐾 )  →  ( 𝐾  <  𝑘  ∨  𝑘  <  𝐾 ) ) | 
						
							| 139 |  | df-ne | ⊢ ( 𝐾  ≠  𝑘  ↔  ¬  𝐾  =  𝑘 ) | 
						
							| 140 | 130 | adantr | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  →  𝑘  ∈  ℝ ) | 
						
							| 141 |  | lttri2 | ⊢ ( ( 𝐾  ∈  ℝ  ∧  𝑘  ∈  ℝ )  →  ( 𝐾  ≠  𝑘  ↔  ( 𝐾  <  𝑘  ∨  𝑘  <  𝐾 ) ) ) | 
						
							| 142 | 134 140 141 | syl2anr | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐾  ≠  𝑘  ↔  ( 𝐾  <  𝑘  ∨  𝑘  <  𝐾 ) ) ) | 
						
							| 143 | 142 | adantr | ⊢ ( ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  <  𝐾 )  →  ( 𝐾  ≠  𝑘  ↔  ( 𝐾  <  𝑘  ∨  𝑘  <  𝐾 ) ) ) | 
						
							| 144 | 139 143 | bitr3id | ⊢ ( ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  <  𝐾 )  →  ( ¬  𝐾  =  𝑘  ↔  ( 𝐾  <  𝑘  ∨  𝑘  <  𝐾 ) ) ) | 
						
							| 145 | 138 144 | mpbird | ⊢ ( ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  <  𝐾 )  →  ¬  𝐾  =  𝑘 ) | 
						
							| 146 | 145 | ex | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑘  <  𝐾  →  ¬  𝐾  =  𝑘 ) ) | 
						
							| 147 | 137 146 | syld | ⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑘  ≤  𝑠  ∧  𝑠  <  𝐾 )  →  ¬  𝐾  =  𝑘 ) ) | 
						
							| 148 | 147 | exp4b | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  →  ( 𝐾  ∈  ℕ0  →  ( 𝑘  ≤  𝑠  →  ( 𝑠  <  𝐾  →  ¬  𝐾  =  𝑘 ) ) ) ) | 
						
							| 149 | 148 | com24 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  →  ( 𝑠  <  𝐾  →  ( 𝑘  ≤  𝑠  →  ( 𝐾  ∈  ℕ0  →  ¬  𝐾  =  𝑘 ) ) ) ) | 
						
							| 150 | 149 | expimpd | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 )  →  ( 𝑘  ≤  𝑠  →  ( 𝐾  ∈  ℕ0  →  ¬  𝐾  =  𝑘 ) ) ) ) | 
						
							| 151 | 150 | com23 | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  ≤  𝑠  →  ( ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 )  →  ( 𝐾  ∈  ℕ0  →  ¬  𝐾  =  𝑘 ) ) ) ) | 
						
							| 152 | 151 | imp | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑘  ≤  𝑠 )  →  ( ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 )  →  ( 𝐾  ∈  ℕ0  →  ¬  𝐾  =  𝑘 ) ) ) | 
						
							| 153 | 152 | 3adant2 | ⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0  ∧  𝑘  ≤  𝑠 )  →  ( ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 )  →  ( 𝐾  ∈  ℕ0  →  ¬  𝐾  =  𝑘 ) ) ) | 
						
							| 154 | 129 153 | sylbi | ⊢ ( 𝑘  ∈  ( 0 ... 𝑠 )  →  ( ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 )  →  ( 𝐾  ∈  ℕ0  →  ¬  𝐾  =  𝑘 ) ) ) | 
						
							| 155 | 154 | com13 | ⊢ ( 𝐾  ∈  ℕ0  →  ( ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  →  ¬  𝐾  =  𝑘 ) ) ) | 
						
							| 156 | 155 | adantr | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  →  ( ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  →  ¬  𝐾  =  𝑘 ) ) ) | 
						
							| 157 | 156 | imp | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  →  ¬  𝐾  =  𝑘 ) ) | 
						
							| 158 | 157 | adantr | ⊢ ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  →  ¬  𝐾  =  𝑘 ) ) | 
						
							| 159 | 158 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  →  ¬  𝐾  =  𝑘 ) ) | 
						
							| 160 | 159 | imp | ⊢ ( ( ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  ¬  𝐾  =  𝑘 ) | 
						
							| 161 | 160 | iffalsed | ⊢ ( ( ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 162 | 161 | mpteq2dva | ⊢ ( ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 163 | 162 | oveq2d | ⊢ ( ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 164 |  | ringmnd | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Mnd ) | 
						
							| 165 | 164 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑅  ∈  Mnd ) | 
						
							| 166 |  | ovex | ⊢ ( 0 ... 𝑠 )  ∈  V | 
						
							| 167 | 43 | gsumz | ⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 0 ... 𝑠 )  ∈  V )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( 0g ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 168 | 165 166 167 | sylancl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( 0g ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 169 | 168 | ad3antlr | ⊢ ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( 0g ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 170 | 169 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( 0g ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 171 | 163 170 | eqtrd | ⊢ ( ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 172 | 171 | mpoeq3dva | ⊢ ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 173 |  | simpr | ⊢ ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 174 | 128 172 173 | 3eqtr4d | ⊢ ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) | 
						
							| 175 | 174 | ex | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  →  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) | 
						
							| 176 | 175 | expr | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  𝑠  ∈  ℕ0 )  →  ( 𝑠  <  𝐾  →  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) | 
						
							| 177 | 176 | a2d | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  𝑠  ∈  ℕ0 )  →  ( ( 𝑠  <  𝐾  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) | 
						
							| 178 | 177 | exp31 | ⊢ ( 𝐾  ∈  ℕ0  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑠  ∈  ℕ0  →  ( ( 𝑠  <  𝐾  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) ) | 
						
							| 179 | 178 | com14 | ⊢ ( ( 𝑠  <  𝐾  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑠  ∈  ℕ0  →  ( 𝐾  ∈  ℕ0  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) ) | 
						
							| 180 | 124 179 | syl | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑠  ∈  ℕ0  →  ( 𝐾  ∈  ℕ0  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) ) | 
						
							| 181 | 180 | ex | ⊢ ( 𝐾  ∈  ℕ0  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑠  ∈  ℕ0  →  ( 𝐾  ∈  ℕ0  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) ) ) | 
						
							| 182 | 181 | com25 | ⊢ ( 𝐾  ∈  ℕ0  →  ( 𝐾  ∈  ℕ0  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑠  ∈  ℕ0  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) ) ) | 
						
							| 183 | 182 | pm2.43i | ⊢ ( 𝐾  ∈  ℕ0  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑠  ∈  ℕ0  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) ) | 
						
							| 184 | 183 | impcom | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑠  ∈  ℕ0  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) | 
						
							| 185 | 184 | imp31 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) | 
						
							| 186 | 185 | com12 | ⊢ ( 𝑠  <  𝐾  →  ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) | 
						
							| 187 | 165 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  𝑅  ∈  Mnd ) | 
						
							| 188 | 187 | adantl | ⊢ ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  →  𝑅  ∈  Mnd ) | 
						
							| 189 | 188 | 3ad2ant1 | ⊢ ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Mnd ) | 
						
							| 190 |  | ovexd | ⊢ ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 0 ... 𝑠 )  ∈  V ) | 
						
							| 191 |  | lenlt | ⊢ ( ( 𝐾  ∈  ℝ  ∧  𝑠  ∈  ℝ )  →  ( 𝐾  ≤  𝑠  ↔  ¬  𝑠  <  𝐾 ) ) | 
						
							| 192 | 134 132 191 | syl2an | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  →  ( 𝐾  ≤  𝑠  ↔  ¬  𝑠  <  𝐾 ) ) | 
						
							| 193 |  | simpll | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ≤  𝑠 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 194 |  | simplr | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ≤  𝑠 )  →  𝑠  ∈  ℕ0 ) | 
						
							| 195 |  | simpr | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ≤  𝑠 )  →  𝐾  ≤  𝑠 ) | 
						
							| 196 |  | elfz2nn0 | ⊢ ( 𝐾  ∈  ( 0 ... 𝑠 )  ↔  ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0  ∧  𝐾  ≤  𝑠 ) ) | 
						
							| 197 | 193 194 195 196 | syl3anbrc | ⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ≤  𝑠 )  →  𝐾  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 198 | 197 | ex | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  →  ( 𝐾  ≤  𝑠  →  𝐾  ∈  ( 0 ... 𝑠 ) ) ) | 
						
							| 199 | 192 198 | sylbird | ⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  →  ( ¬  𝑠  <  𝐾  →  𝐾  ∈  ( 0 ... 𝑠 ) ) ) | 
						
							| 200 | 199 | ad4ant23 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( ¬  𝑠  <  𝐾  →  𝐾  ∈  ( 0 ... 𝑠 ) ) ) | 
						
							| 201 | 200 | impcom | ⊢ ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  →  𝐾  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 202 | 201 | 3ad2ant1 | ⊢ ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝐾  ∈  ( 0 ... 𝑠 ) ) | 
						
							| 203 |  | eqcom | ⊢ ( 𝐾  =  𝑘  ↔  𝑘  =  𝐾 ) | 
						
							| 204 |  | ifbi | ⊢ ( ( 𝐾  =  𝑘  ↔  𝑘  =  𝐾 )  →  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝑘  =  𝐾 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 205 | 203 204 | ax-mp | ⊢ if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝑘  =  𝐾 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) | 
						
							| 206 | 205 | mpteq2i | ⊢ ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝑘  =  𝐾 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 207 |  | simpl2 | ⊢ ( ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑖  ∈  𝑁 ) | 
						
							| 208 |  | simpl3 | ⊢ ( ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑗  ∈  𝑁 ) | 
						
							| 209 | 27 | adantl | ⊢ ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  →  𝑂  ∈  𝐿 ) | 
						
							| 210 | 209 | 3ad2ant1 | ⊢ ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑂  ∈  𝐿 ) | 
						
							| 211 | 210 30 | sylan | ⊢ ( ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 212 | 1 22 23 207 208 211 | matecld | ⊢ ( ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 213 | 91 212 | sylan2 | ⊢ ( ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 214 | 213 | ralrimiva | ⊢ ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ∀ 𝑘  ∈  ( 0 ... 𝑠 ) ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 215 | 43 189 190 202 206 214 | gsummpt1n0 | ⊢ ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) | 
						
							| 216 | 215 | mpoeq3dva | ⊢ ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) ) | 
						
							| 217 |  | csbov | ⊢ ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ⦋ 𝐾  /  𝑘 ⦌ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) | 
						
							| 218 |  | csbfv | ⊢ ⦋ 𝐾  /  𝑘 ⦌ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) | 
						
							| 219 | 218 | a1i | ⊢ ( 𝐾  ∈  ℕ0  →  ⦋ 𝐾  /  𝑘 ⦌ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) | 
						
							| 220 | 219 | oveqd | ⊢ ( 𝐾  ∈  ℕ0  →  ( 𝑖 ⦋ 𝐾  /  𝑘 ⦌ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) ) | 
						
							| 221 | 217 220 | eqtrid | ⊢ ( 𝐾  ∈  ℕ0  →  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) ) | 
						
							| 222 | 221 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) ) | 
						
							| 223 | 222 | mpoeq3dv | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) ) ) | 
						
							| 224 |  | oveq12 | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 )  =  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) ) | 
						
							| 225 | 224 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 ) )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 )  =  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) ) | 
						
							| 226 |  | simprl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑎  ∈  𝑁 ) | 
						
							| 227 |  | simprr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑏  ∈  𝑁 ) | 
						
							| 228 |  | ovexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 )  ∈  V ) | 
						
							| 229 | 223 225 226 227 228 | ovmpod | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) 𝑏 )  =  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) ) | 
						
							| 230 | 229 | ralrimivva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) 𝑏 )  =  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) ) | 
						
							| 231 |  | simpl1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  𝑁  ∈  Fin ) | 
						
							| 232 | 218 | oveqi | ⊢ ( 𝑖 ⦋ 𝐾  /  𝑘 ⦌ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) | 
						
							| 233 | 217 232 | eqtri | ⊢ ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) | 
						
							| 234 |  | simp2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 235 |  | simp3 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 236 | 29 3 2 23 | coe1fvalcl | ⊢ ( ( 𝑂  ∈  𝐿  ∧  𝐾  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 237 | 236 | 3ad2antl3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 238 | 237 | 3ad2ant1 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 239 | 1 22 23 234 235 238 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 240 | 233 239 | eqeltrid | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 241 | 1 22 23 231 18 240 | matbas2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 242 | 1 23 | eqmat | ⊢ ( ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  ∈  ( Base ‘ 𝐴 )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  ∈  ( Base ‘ 𝐴 ) )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) 𝑏 )  =  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) ) ) | 
						
							| 243 | 241 237 242 | syl2anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) 𝑏 )  =  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) ) ) | 
						
							| 244 | 230 243 | mpbird | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) | 
						
							| 245 | 244 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) | 
						
							| 246 | 245 | adantl | ⊢ ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) | 
						
							| 247 | 216 246 | eqtrd | ⊢ ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) | 
						
							| 248 | 247 | ex | ⊢ ( ¬  𝑠  <  𝐾  →  ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) | 
						
							| 249 | 186 248 | pm2.61i | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) | 
						
							| 250 | 97 120 249 | 3eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) | 
						
							| 251 |  | eqid | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 ) | 
						
							| 252 | 29 3 2 251 | coe1sfi | ⊢ ( 𝑂  ∈  𝐿  →  ( coe1 ‘ 𝑂 )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 253 | 26 252 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( coe1 ‘ 𝑂 )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 254 | 29 3 2 251 23 | coe1fsupp | ⊢ ( 𝑂  ∈  𝐿  →  ( coe1 ‘ 𝑂 )  ∈  { 𝑥  ∈  ( ( Base ‘ 𝐴 )  ↑m  ℕ0 )  ∣  𝑥  finSupp  ( 0g ‘ 𝐴 ) } ) | 
						
							| 255 |  | elrabi | ⊢ ( ( coe1 ‘ 𝑂 )  ∈  { 𝑥  ∈  ( ( Base ‘ 𝐴 )  ↑m  ℕ0 )  ∣  𝑥  finSupp  ( 0g ‘ 𝐴 ) }  →  ( coe1 ‘ 𝑂 )  ∈  ( ( Base ‘ 𝐴 )  ↑m  ℕ0 ) ) | 
						
							| 256 | 26 254 255 | 3syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( coe1 ‘ 𝑂 )  ∈  ( ( Base ‘ 𝐴 )  ↑m  ℕ0 ) ) | 
						
							| 257 |  | fvex | ⊢ ( 0g ‘ 𝐴 )  ∈  V | 
						
							| 258 |  | fsuppmapnn0ub | ⊢ ( ( ( coe1 ‘ 𝑂 )  ∈  ( ( Base ‘ 𝐴 )  ↑m  ℕ0 )  ∧  ( 0g ‘ 𝐴 )  ∈  V )  →  ( ( coe1 ‘ 𝑂 )  finSupp  ( 0g ‘ 𝐴 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) ) | 
						
							| 259 | 256 257 258 | sylancl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑂 )  finSupp  ( 0g ‘ 𝐴 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) ) | 
						
							| 260 | 253 259 | mpd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) | 
						
							| 261 | 250 260 | r19.29a | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) | 
						
							| 262 | 9 261 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝐾 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) |