| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mp2pm2mp.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mp2pm2mp.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 3 |  | mp2pm2mp.l | ⊢ 𝐿  =  ( Base ‘ 𝑄 ) | 
						
							| 4 |  | mp2pm2mp.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 5 |  | mp2pm2mp.e | ⊢ 𝐸  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | mp2pm2mp.y | ⊢ 𝑌  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | mp2pm2mp.i | ⊢ 𝐼  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) | 
						
							| 8 |  | mp2pm2mplem2.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 9 | 1 2 3 4 5 6 7 | mp2pm2mplem1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝐼 ‘ 𝑂 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝐾 )  =  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  decompPMat  𝐾 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝐾 )  =  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  decompPMat  𝐾 ) ) | 
						
							| 12 |  | eqid | ⊢ ( 𝑁  Mat  𝑃 )  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ ( 𝑁  Mat  𝑃 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑃 ) ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 12 13 | mp2pm2mplem2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) ) ) | 
						
							| 15 | 12 13 | decpmatval | ⊢ ( ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  decompPMat  𝐾 )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) 𝑏 ) ) ‘ 𝐾 ) ) ) | 
						
							| 16 | 14 15 | sylan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  decompPMat  𝐾 )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) 𝑏 ) ) ‘ 𝐾 ) ) ) | 
						
							| 17 |  | eqidd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) | 
						
							| 18 |  | oveq12 | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) | 
						
							| 20 | 19 | mpteq2dv | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) )  =  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 ) )  →  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) )  =  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) | 
						
							| 23 |  | simp2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑎  ∈  𝑁 ) | 
						
							| 24 |  | simp3 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  𝑏  ∈  𝑁 ) | 
						
							| 25 |  | ovexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) )  ∈  V ) | 
						
							| 26 | 17 22 23 24 25 | ovmpod | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) 𝑏 )  =  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( coe1 ‘ ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) 𝑏 ) )  =  ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) | 
						
							| 28 | 27 | fveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) 𝑏 ) ) ‘ 𝐾 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) | 
						
							| 29 | 28 | mpoeq3dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) 𝑏 ) ) ‘ 𝐾 ) )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) ) | 
						
							| 30 |  | oveq1 | ⊢ ( 𝑎  =  𝑖  →  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  =  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( 𝑎  =  𝑖  →  ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) | 
						
							| 32 | 31 | mpteq2dv | ⊢ ( 𝑎  =  𝑖  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( 𝑎  =  𝑖  →  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) )  =  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( 𝑎  =  𝑖  →  ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  =  ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) | 
						
							| 35 | 34 | fveq1d | ⊢ ( 𝑎  =  𝑖  →  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) | 
						
							| 36 |  | simpl | ⊢ ( ( 𝑏  =  𝑗  ∧  𝑘  ∈  ℕ0 )  →  𝑏  =  𝑗 ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( ( 𝑏  =  𝑗  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  =  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( ( 𝑏  =  𝑗  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) | 
						
							| 39 | 38 | mpteq2dva | ⊢ ( 𝑏  =  𝑗  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( 𝑏  =  𝑗  →  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) )  =  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) | 
						
							| 41 | 40 | fveq2d | ⊢ ( 𝑏  =  𝑗  →  ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  =  ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) | 
						
							| 42 | 41 | fveq1d | ⊢ ( 𝑏  =  𝑗  →  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) | 
						
							| 43 | 35 42 | cbvmpov | ⊢ ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) | 
						
							| 44 | 29 43 | eqtrdi | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) 𝑏 ) ) ‘ 𝐾 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) ) | 
						
							| 45 | 11 16 44 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝐾 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) ) |