Metamath Proof Explorer


Theorem mp2pm2mplem3

Description: Lemma 3 for mp2pm2mp . (Contributed by AV, 10-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses mp2pm2mp.a A=NMatR
mp2pm2mp.q Q=Poly1A
mp2pm2mp.l L=BaseQ
mp2pm2mp.m ·˙=P
mp2pm2mp.e E=mulGrpP
mp2pm2mp.y Y=var1R
mp2pm2mp.i I=pLiN,jNPk0icoe1pkj·˙kEY
mp2pm2mplem2.p P=Poly1R
Assertion mp2pm2mplem3 NFinRRingOLK0IOdecompPMatK=iN,jNcoe1Pk0icoe1Okj·˙kEYK

Proof

Step Hyp Ref Expression
1 mp2pm2mp.a A=NMatR
2 mp2pm2mp.q Q=Poly1A
3 mp2pm2mp.l L=BaseQ
4 mp2pm2mp.m ·˙=P
5 mp2pm2mp.e E=mulGrpP
6 mp2pm2mp.y Y=var1R
7 mp2pm2mp.i I=pLiN,jNPk0icoe1pkj·˙kEY
8 mp2pm2mplem2.p P=Poly1R
9 1 2 3 4 5 6 7 mp2pm2mplem1 NFinRRingOLIO=iN,jNPk0icoe1Okj·˙kEY
10 9 oveq1d NFinRRingOLIOdecompPMatK=iN,jNPk0icoe1Okj·˙kEYdecompPMatK
11 10 adantr NFinRRingOLK0IOdecompPMatK=iN,jNPk0icoe1Okj·˙kEYdecompPMatK
12 eqid NMatP=NMatP
13 eqid BaseNMatP=BaseNMatP
14 1 2 3 4 5 6 7 8 12 13 mp2pm2mplem2 NFinRRingOLiN,jNPk0icoe1Okj·˙kEYBaseNMatP
15 12 13 decpmatval iN,jNPk0icoe1Okj·˙kEYBaseNMatPK0iN,jNPk0icoe1Okj·˙kEYdecompPMatK=aN,bNcoe1aiN,jNPk0icoe1Okj·˙kEYbK
16 14 15 sylan NFinRRingOLK0iN,jNPk0icoe1Okj·˙kEYdecompPMatK=aN,bNcoe1aiN,jNPk0icoe1Okj·˙kEYbK
17 eqidd NFinRRingOLK0aNbNiN,jNPk0icoe1Okj·˙kEY=iN,jNPk0icoe1Okj·˙kEY
18 oveq12 i=aj=bicoe1Okj=acoe1Okb
19 18 oveq1d i=aj=bicoe1Okj·˙kEY=acoe1Okb·˙kEY
20 19 mpteq2dv i=aj=bk0icoe1Okj·˙kEY=k0acoe1Okb·˙kEY
21 20 oveq2d i=aj=bPk0icoe1Okj·˙kEY=Pk0acoe1Okb·˙kEY
22 21 adantl NFinRRingOLK0aNbNi=aj=bPk0icoe1Okj·˙kEY=Pk0acoe1Okb·˙kEY
23 simp2 NFinRRingOLK0aNbNaN
24 simp3 NFinRRingOLK0aNbNbN
25 ovexd NFinRRingOLK0aNbNPk0acoe1Okb·˙kEYV
26 17 22 23 24 25 ovmpod NFinRRingOLK0aNbNaiN,jNPk0icoe1Okj·˙kEYb=Pk0acoe1Okb·˙kEY
27 26 fveq2d NFinRRingOLK0aNbNcoe1aiN,jNPk0icoe1Okj·˙kEYb=coe1Pk0acoe1Okb·˙kEY
28 27 fveq1d NFinRRingOLK0aNbNcoe1aiN,jNPk0icoe1Okj·˙kEYbK=coe1Pk0acoe1Okb·˙kEYK
29 28 mpoeq3dva NFinRRingOLK0aN,bNcoe1aiN,jNPk0icoe1Okj·˙kEYbK=aN,bNcoe1Pk0acoe1Okb·˙kEYK
30 oveq1 a=iacoe1Okb=icoe1Okb
31 30 oveq1d a=iacoe1Okb·˙kEY=icoe1Okb·˙kEY
32 31 mpteq2dv a=ik0acoe1Okb·˙kEY=k0icoe1Okb·˙kEY
33 32 oveq2d a=iPk0acoe1Okb·˙kEY=Pk0icoe1Okb·˙kEY
34 33 fveq2d a=icoe1Pk0acoe1Okb·˙kEY=coe1Pk0icoe1Okb·˙kEY
35 34 fveq1d a=icoe1Pk0acoe1Okb·˙kEYK=coe1Pk0icoe1Okb·˙kEYK
36 simpl b=jk0b=j
37 36 oveq2d b=jk0icoe1Okb=icoe1Okj
38 37 oveq1d b=jk0icoe1Okb·˙kEY=icoe1Okj·˙kEY
39 38 mpteq2dva b=jk0icoe1Okb·˙kEY=k0icoe1Okj·˙kEY
40 39 oveq2d b=jPk0icoe1Okb·˙kEY=Pk0icoe1Okj·˙kEY
41 40 fveq2d b=jcoe1Pk0icoe1Okb·˙kEY=coe1Pk0icoe1Okj·˙kEY
42 41 fveq1d b=jcoe1Pk0icoe1Okb·˙kEYK=coe1Pk0icoe1Okj·˙kEYK
43 35 42 cbvmpov aN,bNcoe1Pk0acoe1Okb·˙kEYK=iN,jNcoe1Pk0icoe1Okj·˙kEYK
44 29 43 eqtrdi NFinRRingOLK0aN,bNcoe1aiN,jNPk0icoe1Okj·˙kEYbK=iN,jNcoe1Pk0icoe1Okj·˙kEYK
45 11 16 44 3eqtrd NFinRRingOLK0IOdecompPMatK=iN,jNcoe1Pk0icoe1Okj·˙kEYK