Description: Lemma 3 for mp2pm2mp . (Contributed by AV, 10-Oct-2019) (Revised by AV, 5-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mp2pm2mp.a | |
|
mp2pm2mp.q | |
||
mp2pm2mp.l | |
||
mp2pm2mp.m | |
||
mp2pm2mp.e | |
||
mp2pm2mp.y | |
||
mp2pm2mp.i | |
||
mp2pm2mplem2.p | |
||
Assertion | mp2pm2mplem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2pm2mp.a | |
|
2 | mp2pm2mp.q | |
|
3 | mp2pm2mp.l | |
|
4 | mp2pm2mp.m | |
|
5 | mp2pm2mp.e | |
|
6 | mp2pm2mp.y | |
|
7 | mp2pm2mp.i | |
|
8 | mp2pm2mplem2.p | |
|
9 | 1 2 3 4 5 6 7 | mp2pm2mplem1 | |
10 | 9 | oveq1d | |
11 | 10 | adantr | |
12 | eqid | |
|
13 | eqid | |
|
14 | 1 2 3 4 5 6 7 8 12 13 | mp2pm2mplem2 | |
15 | 12 13 | decpmatval | |
16 | 14 15 | sylan | |
17 | eqidd | |
|
18 | oveq12 | |
|
19 | 18 | oveq1d | |
20 | 19 | mpteq2dv | |
21 | 20 | oveq2d | |
22 | 21 | adantl | |
23 | simp2 | |
|
24 | simp3 | |
|
25 | ovexd | |
|
26 | 17 22 23 24 25 | ovmpod | |
27 | 26 | fveq2d | |
28 | 27 | fveq1d | |
29 | 28 | mpoeq3dva | |
30 | oveq1 | |
|
31 | 30 | oveq1d | |
32 | 31 | mpteq2dv | |
33 | 32 | oveq2d | |
34 | 33 | fveq2d | |
35 | 34 | fveq1d | |
36 | simpl | |
|
37 | 36 | oveq2d | |
38 | 37 | oveq1d | |
39 | 38 | mpteq2dva | |
40 | 39 | oveq2d | |
41 | 40 | fveq2d | |
42 | 41 | fveq1d | |
43 | 35 42 | cbvmpov | |
44 | 29 43 | eqtrdi | |
45 | 11 16 44 | 3eqtrd | |