| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mp2pm2mp.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mp2pm2mp.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 3 |  | mp2pm2mp.l | ⊢ 𝐿  =  ( Base ‘ 𝑄 ) | 
						
							| 4 |  | mp2pm2mp.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 5 |  | mp2pm2mp.e | ⊢ 𝐸  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 6 |  | mp2pm2mp.y | ⊢ 𝑌  =  ( var1 ‘ 𝑅 ) | 
						
							| 7 |  | mp2pm2mp.i | ⊢ 𝐼  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) | 
						
							| 8 |  | mp2pm2mplem2.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 9 |  | mp2pm2mplem2.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 10 |  | mp2pm2mplem2.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 12 |  | simp1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑁  ∈  Fin ) | 
						
							| 13 | 8 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑃  ∈  Ring ) | 
						
							| 15 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 16 |  | ringcmn | ⊢ ( 𝑃  ∈  Ring  →  𝑃  ∈  CMnd ) | 
						
							| 17 | 13 16 | syl | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  CMnd ) | 
						
							| 18 | 17 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑃  ∈  CMnd ) | 
						
							| 19 | 18 | 3ad2ant1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑃  ∈  CMnd ) | 
						
							| 20 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 21 | 20 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ℕ0  ∈  V ) | 
						
							| 22 |  | simpl12 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 25 |  | simpl2 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑖  ∈  𝑁 ) | 
						
							| 26 |  | simpl3 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑗  ∈  𝑁 ) | 
						
							| 27 |  | simp13 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑂  ∈  𝐿 ) | 
						
							| 28 |  | eqid | ⊢ ( coe1 ‘ 𝑂 )  =  ( coe1 ‘ 𝑂 ) | 
						
							| 29 | 28 3 2 24 | coe1fvalcl | ⊢ ( ( 𝑂  ∈  𝐿  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 30 | 27 29 | sylan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 31 | 1 23 24 25 26 30 | matecld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 32 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 33 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 34 | 23 8 6 4 33 5 11 | ply1tmcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 35 | 22 31 32 34 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 36 | 35 | fmpttd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑃 ) ) | 
						
							| 37 | 1 2 3 8 4 5 6 | mply1topmatcllem | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) | 
						
							| 38 | 11 15 19 21 36 37 | gsumcl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 39 | 9 11 10 12 14 38 | matbas2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  ∈  𝐵 ) |