| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mply1topmat.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
mply1topmat.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
| 3 |
|
mply1topmat.l |
⊢ 𝐿 = ( Base ‘ 𝑄 ) |
| 4 |
|
mply1topmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 5 |
|
mply1topmat.m |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
| 6 |
|
mply1topmat.e |
⊢ 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 7 |
|
mply1topmat.y |
⊢ 𝑌 = ( var1 ‘ 𝑅 ) |
| 8 |
|
mply1topmat.i |
⊢ 𝐼 = ( 𝑝 ∈ 𝐿 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) |
| 9 |
|
mply1topmatcl.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 10 |
|
mply1topmatcl.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 11 |
1 2 3 4 5 6 7 8
|
mply1topmatval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑂 ∈ 𝐿 ) → ( 𝐼 ‘ 𝑂 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) |
| 12 |
11
|
3adant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝐼 ‘ 𝑂 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 14 |
|
simp1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑁 ∈ Fin ) |
| 15 |
4
|
fvexi |
⊢ 𝑃 ∈ V |
| 16 |
15
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑃 ∈ V ) |
| 17 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 18 |
4
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 19 |
|
ringcmn |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) |
| 20 |
18 19
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ CMnd ) |
| 21 |
20
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑃 ∈ CMnd ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑃 ∈ CMnd ) |
| 23 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 24 |
23
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ℕ0 ∈ V ) |
| 25 |
4
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 26 |
25
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑃 ∈ LMod ) |
| 27 |
26
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑃 ∈ LMod ) |
| 28 |
27
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑃 ∈ LMod ) |
| 29 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 31 |
|
simpl2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑖 ∈ 𝑁 ) |
| 32 |
|
simpl3 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑗 ∈ 𝑁 ) |
| 33 |
|
simpl13 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑂 ∈ 𝐿 ) |
| 34 |
|
eqid |
⊢ ( coe1 ‘ 𝑂 ) = ( coe1 ‘ 𝑂 ) |
| 35 |
34 3 2 30
|
coe1f |
⊢ ( 𝑂 ∈ 𝐿 → ( coe1 ‘ 𝑂 ) : ℕ0 ⟶ ( Base ‘ 𝐴 ) ) |
| 36 |
33 35
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → ( coe1 ‘ 𝑂 ) : ℕ0 ⟶ ( Base ‘ 𝐴 ) ) |
| 37 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 38 |
36 37
|
ffvelcdmd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 39 |
1 29 30 31 32 38
|
matecld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 40 |
4
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 41 |
40
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 42 |
41
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
| 43 |
42
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
| 44 |
43
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
| 45 |
44
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
| 46 |
39 45
|
eleqtrrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 47 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 48 |
47 13
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 49 |
18
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑃 ∈ Ring ) |
| 50 |
47
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 51 |
49 50
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 52 |
51
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 53 |
52
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 54 |
7 4 13
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ ( Base ‘ 𝑃 ) ) |
| 55 |
54
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑌 ∈ ( Base ‘ 𝑃 ) ) |
| 56 |
55
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ ( Base ‘ 𝑃 ) ) |
| 57 |
56
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑌 ∈ ( Base ‘ 𝑃 ) ) |
| 58 |
48 6 53 37 57
|
mulgnn0cld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 𝐸 𝑌 ) ∈ ( Base ‘ 𝑃 ) ) |
| 59 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 60 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 61 |
13 59 5 60
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑘 𝐸 𝑌 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 62 |
28 46 58 61
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 63 |
62
|
fmpttd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑃 ) ) |
| 64 |
1 2 3 4 5 6 7
|
mply1topmatcllem |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 65 |
13 17 22 24 63 64
|
gsumcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 66 |
9 13 10 14 16 65
|
matbas2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ∈ 𝐵 ) |
| 67 |
12 66
|
eqeltrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝐼 ‘ 𝑂 ) ∈ 𝐵 ) |