| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mp2pm2mp.a |
|- A = ( N Mat R ) |
| 2 |
|
mp2pm2mp.q |
|- Q = ( Poly1 ` A ) |
| 3 |
|
mp2pm2mp.l |
|- L = ( Base ` Q ) |
| 4 |
|
mp2pm2mp.m |
|- .x. = ( .s ` P ) |
| 5 |
|
mp2pm2mp.e |
|- E = ( .g ` ( mulGrp ` P ) ) |
| 6 |
|
mp2pm2mp.y |
|- Y = ( var1 ` R ) |
| 7 |
|
mp2pm2mp.i |
|- I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) |
| 8 |
|
mp2pm2mplem2.p |
|- P = ( Poly1 ` R ) |
| 9 |
|
mp2pm2mp.t |
|- T = ( N pMatToMatPoly R ) |
| 10 |
|
eqid |
|- ( N Mat P ) = ( N Mat P ) |
| 11 |
|
eqid |
|- ( Base ` ( N Mat P ) ) = ( Base ` ( N Mat P ) ) |
| 12 |
1 2 3 8 4 5 6 7 10 11
|
mply1topmatcl |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( I ` O ) e. ( Base ` ( N Mat P ) ) ) |
| 13 |
|
eqid |
|- ( .s ` Q ) = ( .s ` Q ) |
| 14 |
|
eqid |
|- ( .g ` ( mulGrp ` Q ) ) = ( .g ` ( mulGrp ` Q ) ) |
| 15 |
|
eqid |
|- ( var1 ` A ) = ( var1 ` A ) |
| 16 |
8 10 11 13 14 15 1 2 9
|
pm2mpfval |
|- ( ( N e. Fin /\ R e. Ring /\ ( I ` O ) e. ( Base ` ( N Mat P ) ) ) -> ( T ` ( I ` O ) ) = ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) |
| 17 |
12 16
|
syld3an3 |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( T ` ( I ` O ) ) = ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) |
| 18 |
1
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 19 |
18
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> A e. Ring ) |
| 20 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
| 21 |
2
|
ply1ring |
|- ( A e. Ring -> Q e. Ring ) |
| 22 |
|
ringcmn |
|- ( Q e. Ring -> Q e. CMnd ) |
| 23 |
18 21 22
|
3syl |
|- ( ( N e. Fin /\ R e. Ring ) -> Q e. CMnd ) |
| 24 |
23
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> Q e. CMnd ) |
| 25 |
|
nn0ex |
|- NN0 e. _V |
| 26 |
25
|
a1i |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> NN0 e. _V ) |
| 27 |
19
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> A e. Ring ) |
| 28 |
|
simpl2 |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> R e. Ring ) |
| 29 |
12
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> ( I ` O ) e. ( Base ` ( N Mat P ) ) ) |
| 30 |
|
simpr |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> n e. NN0 ) |
| 31 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 32 |
8 10 11 1 31
|
decpmatcl |
|- ( ( R e. Ring /\ ( I ` O ) e. ( Base ` ( N Mat P ) ) /\ n e. NN0 ) -> ( ( I ` O ) decompPMat n ) e. ( Base ` A ) ) |
| 33 |
28 29 30 32
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> ( ( I ` O ) decompPMat n ) e. ( Base ` A ) ) |
| 34 |
|
eqid |
|- ( mulGrp ` Q ) = ( mulGrp ` Q ) |
| 35 |
31 2 15 13 34 14 3
|
ply1tmcl |
|- ( ( A e. Ring /\ ( ( I ` O ) decompPMat n ) e. ( Base ` A ) /\ n e. NN0 ) -> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) e. L ) |
| 36 |
27 33 30 35
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) e. L ) |
| 37 |
36
|
fmpttd |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) : NN0 --> L ) |
| 38 |
|
fveq2 |
|- ( k = n -> ( ( coe1 ` p ) ` k ) = ( ( coe1 ` p ) ` n ) ) |
| 39 |
38
|
oveqd |
|- ( k = n -> ( i ( ( coe1 ` p ) ` k ) j ) = ( i ( ( coe1 ` p ) ` n ) j ) ) |
| 40 |
|
oveq1 |
|- ( k = n -> ( k E Y ) = ( n E Y ) ) |
| 41 |
39 40
|
oveq12d |
|- ( k = n -> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) = ( ( i ( ( coe1 ` p ) ` n ) j ) .x. ( n E Y ) ) ) |
| 42 |
41
|
cbvmptv |
|- ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) = ( n e. NN0 |-> ( ( i ( ( coe1 ` p ) ` n ) j ) .x. ( n E Y ) ) ) |
| 43 |
42
|
a1i |
|- ( ( i e. N /\ j e. N ) -> ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) = ( n e. NN0 |-> ( ( i ( ( coe1 ` p ) ` n ) j ) .x. ( n E Y ) ) ) ) |
| 44 |
43
|
oveq2d |
|- ( ( i e. N /\ j e. N ) -> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) = ( P gsum ( n e. NN0 |-> ( ( i ( ( coe1 ` p ) ` n ) j ) .x. ( n E Y ) ) ) ) ) |
| 45 |
44
|
mpoeq3ia |
|- ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) = ( i e. N , j e. N |-> ( P gsum ( n e. NN0 |-> ( ( i ( ( coe1 ` p ) ` n ) j ) .x. ( n E Y ) ) ) ) ) |
| 46 |
45
|
mpteq2i |
|- ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( n e. NN0 |-> ( ( i ( ( coe1 ` p ) ` n ) j ) .x. ( n E Y ) ) ) ) ) ) |
| 47 |
7 46
|
eqtri |
|- I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( n e. NN0 |-> ( ( i ( ( coe1 ` p ) ` n ) j ) .x. ( n E Y ) ) ) ) ) ) |
| 48 |
1 2 3 4 5 6 47 8 13 14 15
|
mp2pm2mplem5 |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) finSupp ( 0g ` Q ) ) |
| 49 |
3 20 24 26 37 48
|
gsumcl |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. L ) |
| 50 |
|
simp3 |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> O e. L ) |
| 51 |
19 49 50
|
3jca |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( A e. Ring /\ ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. L /\ O e. L ) ) |
| 52 |
1 2 3 4 5 6 7 8
|
mp2pm2mplem4 |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> ( ( I ` O ) decompPMat n ) = ( ( coe1 ` O ) ` n ) ) |
| 53 |
52
|
oveq1d |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) = ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) |
| 54 |
53
|
adantlr |
|- ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) /\ n e. NN0 ) -> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) = ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) |
| 55 |
54
|
mpteq2dva |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) = ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) |
| 56 |
55
|
oveq2d |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) = ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) |
| 57 |
56
|
fveq2d |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) = ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) |
| 58 |
57
|
fveq1d |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) = ( ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ) |
| 59 |
19 50
|
jca |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( A e. Ring /\ O e. L ) ) |
| 60 |
59
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( A e. Ring /\ O e. L ) ) |
| 61 |
|
eqid |
|- ( coe1 ` O ) = ( coe1 ` O ) |
| 62 |
2 15 3 13 34 14 61
|
ply1coe |
|- ( ( A e. Ring /\ O e. L ) -> O = ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) |
| 63 |
60 62
|
syl |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> O = ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) |
| 64 |
63
|
eqcomd |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) = O ) |
| 65 |
64
|
fveq2d |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) = ( coe1 ` O ) ) |
| 66 |
65
|
fveq1d |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) = ( ( coe1 ` O ) ` l ) ) |
| 67 |
58 66
|
eqtrd |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) = ( ( coe1 ` O ) ` l ) ) |
| 68 |
67
|
ralrimiva |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> A. l e. NN0 ( ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) = ( ( coe1 ` O ) ` l ) ) |
| 69 |
|
eqid |
|- ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) = ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) |
| 70 |
2 3 69 61
|
eqcoe1ply1eq |
|- ( ( A e. Ring /\ ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. L /\ O e. L ) -> ( A. l e. NN0 ( ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) = ( ( coe1 ` O ) ` l ) -> ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) = O ) ) |
| 71 |
51 68 70
|
sylc |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) = O ) |
| 72 |
17 71
|
eqtrd |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( T ` ( I ` O ) ) = O ) |