| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mp2pm2mp.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mp2pm2mp.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 3 |  | mp2pm2mp.l |  |-  L = ( Base ` Q ) | 
						
							| 4 |  | mp2pm2mp.m |  |-  .x. = ( .s ` P ) | 
						
							| 5 |  | mp2pm2mp.e |  |-  E = ( .g ` ( mulGrp ` P ) ) | 
						
							| 6 |  | mp2pm2mp.y |  |-  Y = ( var1 ` R ) | 
						
							| 7 |  | mp2pm2mp.i |  |-  I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) | 
						
							| 8 |  | mp2pm2mplem2.p |  |-  P = ( Poly1 ` R ) | 
						
							| 9 |  | mp2pm2mp.t |  |-  T = ( N pMatToMatPoly R ) | 
						
							| 10 |  | eqid |  |-  ( N Mat P ) = ( N Mat P ) | 
						
							| 11 |  | eqid |  |-  ( Base ` ( N Mat P ) ) = ( Base ` ( N Mat P ) ) | 
						
							| 12 | 1 2 3 8 4 5 6 7 10 11 | mply1topmatcl |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( I ` O ) e. ( Base ` ( N Mat P ) ) ) | 
						
							| 13 |  | eqid |  |-  ( .s ` Q ) = ( .s ` Q ) | 
						
							| 14 |  | eqid |  |-  ( .g ` ( mulGrp ` Q ) ) = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 15 |  | eqid |  |-  ( var1 ` A ) = ( var1 ` A ) | 
						
							| 16 | 8 10 11 13 14 15 1 2 9 | pm2mpfval |  |-  ( ( N e. Fin /\ R e. Ring /\ ( I ` O ) e. ( Base ` ( N Mat P ) ) ) -> ( T ` ( I ` O ) ) = ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 17 | 12 16 | syld3an3 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( T ` ( I ` O ) ) = ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 18 | 1 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 19 | 18 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> A e. Ring ) | 
						
							| 20 |  | eqid |  |-  ( 0g ` Q ) = ( 0g ` Q ) | 
						
							| 21 | 2 | ply1ring |  |-  ( A e. Ring -> Q e. Ring ) | 
						
							| 22 |  | ringcmn |  |-  ( Q e. Ring -> Q e. CMnd ) | 
						
							| 23 | 18 21 22 | 3syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. CMnd ) | 
						
							| 24 | 23 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> Q e. CMnd ) | 
						
							| 25 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 26 | 25 | a1i |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> NN0 e. _V ) | 
						
							| 27 | 19 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> A e. Ring ) | 
						
							| 28 |  | simpl2 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> R e. Ring ) | 
						
							| 29 | 12 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> ( I ` O ) e. ( Base ` ( N Mat P ) ) ) | 
						
							| 30 |  | simpr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> n e. NN0 ) | 
						
							| 31 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 32 | 8 10 11 1 31 | decpmatcl |  |-  ( ( R e. Ring /\ ( I ` O ) e. ( Base ` ( N Mat P ) ) /\ n e. NN0 ) -> ( ( I ` O ) decompPMat n ) e. ( Base ` A ) ) | 
						
							| 33 | 28 29 30 32 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> ( ( I ` O ) decompPMat n ) e. ( Base ` A ) ) | 
						
							| 34 |  | eqid |  |-  ( mulGrp ` Q ) = ( mulGrp ` Q ) | 
						
							| 35 | 31 2 15 13 34 14 3 | ply1tmcl |  |-  ( ( A e. Ring /\ ( ( I ` O ) decompPMat n ) e. ( Base ` A ) /\ n e. NN0 ) -> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) e. L ) | 
						
							| 36 | 27 33 30 35 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) e. L ) | 
						
							| 37 | 36 | fmpttd |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) : NN0 --> L ) | 
						
							| 38 |  | fveq2 |  |-  ( k = n -> ( ( coe1 ` p ) ` k ) = ( ( coe1 ` p ) ` n ) ) | 
						
							| 39 | 38 | oveqd |  |-  ( k = n -> ( i ( ( coe1 ` p ) ` k ) j ) = ( i ( ( coe1 ` p ) ` n ) j ) ) | 
						
							| 40 |  | oveq1 |  |-  ( k = n -> ( k E Y ) = ( n E Y ) ) | 
						
							| 41 | 39 40 | oveq12d |  |-  ( k = n -> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) = ( ( i ( ( coe1 ` p ) ` n ) j ) .x. ( n E Y ) ) ) | 
						
							| 42 | 41 | cbvmptv |  |-  ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) = ( n e. NN0 |-> ( ( i ( ( coe1 ` p ) ` n ) j ) .x. ( n E Y ) ) ) | 
						
							| 43 | 42 | a1i |  |-  ( ( i e. N /\ j e. N ) -> ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) = ( n e. NN0 |-> ( ( i ( ( coe1 ` p ) ` n ) j ) .x. ( n E Y ) ) ) ) | 
						
							| 44 | 43 | oveq2d |  |-  ( ( i e. N /\ j e. N ) -> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) = ( P gsum ( n e. NN0 |-> ( ( i ( ( coe1 ` p ) ` n ) j ) .x. ( n E Y ) ) ) ) ) | 
						
							| 45 | 44 | mpoeq3ia |  |-  ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) = ( i e. N , j e. N |-> ( P gsum ( n e. NN0 |-> ( ( i ( ( coe1 ` p ) ` n ) j ) .x. ( n E Y ) ) ) ) ) | 
						
							| 46 | 45 | mpteq2i |  |-  ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( n e. NN0 |-> ( ( i ( ( coe1 ` p ) ` n ) j ) .x. ( n E Y ) ) ) ) ) ) | 
						
							| 47 | 7 46 | eqtri |  |-  I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( n e. NN0 |-> ( ( i ( ( coe1 ` p ) ` n ) j ) .x. ( n E Y ) ) ) ) ) ) | 
						
							| 48 | 1 2 3 4 5 6 47 8 13 14 15 | mp2pm2mplem5 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) finSupp ( 0g ` Q ) ) | 
						
							| 49 | 3 20 24 26 37 48 | gsumcl |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. L ) | 
						
							| 50 |  | simp3 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> O e. L ) | 
						
							| 51 | 19 49 50 | 3jca |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( A e. Ring /\ ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. L /\ O e. L ) ) | 
						
							| 52 | 1 2 3 4 5 6 7 8 | mp2pm2mplem4 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> ( ( I ` O ) decompPMat n ) = ( ( coe1 ` O ) ` n ) ) | 
						
							| 53 | 52 | oveq1d |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ n e. NN0 ) -> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) = ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) | 
						
							| 54 | 53 | adantlr |  |-  ( ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) /\ n e. NN0 ) -> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) = ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) | 
						
							| 55 | 54 | mpteq2dva |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) = ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) | 
						
							| 56 | 55 | oveq2d |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) = ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 57 | 56 | fveq2d |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) = ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ) | 
						
							| 58 | 57 | fveq1d |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) = ( ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) ) | 
						
							| 59 | 19 50 | jca |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( A e. Ring /\ O e. L ) ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( A e. Ring /\ O e. L ) ) | 
						
							| 61 |  | eqid |  |-  ( coe1 ` O ) = ( coe1 ` O ) | 
						
							| 62 | 2 15 3 13 34 14 61 | ply1coe |  |-  ( ( A e. Ring /\ O e. L ) -> O = ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 63 | 60 62 | syl |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> O = ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 64 | 63 | eqcomd |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) = O ) | 
						
							| 65 | 64 | fveq2d |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) = ( coe1 ` O ) ) | 
						
							| 66 | 65 | fveq1d |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( coe1 ` O ) ` n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) = ( ( coe1 ` O ) ` l ) ) | 
						
							| 67 | 58 66 | eqtrd |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ l e. NN0 ) -> ( ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) = ( ( coe1 ` O ) ` l ) ) | 
						
							| 68 | 67 | ralrimiva |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> A. l e. NN0 ( ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) = ( ( coe1 ` O ) ` l ) ) | 
						
							| 69 |  | eqid |  |-  ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) = ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) | 
						
							| 70 | 2 3 69 61 | eqcoe1ply1eq |  |-  ( ( A e. Ring /\ ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) e. L /\ O e. L ) -> ( A. l e. NN0 ( ( coe1 ` ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) ) ` l ) = ( ( coe1 ` O ) ` l ) -> ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) = O ) ) | 
						
							| 71 | 51 68 70 | sylc |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( Q gsum ( n e. NN0 |-> ( ( ( I ` O ) decompPMat n ) ( .s ` Q ) ( n ( .g ` ( mulGrp ` Q ) ) ( var1 ` A ) ) ) ) ) = O ) | 
						
							| 72 | 17 71 | eqtrd |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( T ` ( I ` O ) ) = O ) |