| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mp2pm2mp.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | mp2pm2mp.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 3 |  | mp2pm2mp.l |  |-  L = ( Base ` Q ) | 
						
							| 4 |  | mp2pm2mp.m |  |-  .x. = ( .s ` P ) | 
						
							| 5 |  | mp2pm2mp.e |  |-  E = ( .g ` ( mulGrp ` P ) ) | 
						
							| 6 |  | mp2pm2mp.y |  |-  Y = ( var1 ` R ) | 
						
							| 7 |  | mp2pm2mp.i |  |-  I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) | 
						
							| 8 |  | mp2pm2mplem2.p |  |-  P = ( Poly1 ` R ) | 
						
							| 9 |  | mp2pm2mplem5.m |  |-  .* = ( .s ` Q ) | 
						
							| 10 |  | mp2pm2mplem5.e |  |-  .^ = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 11 |  | mp2pm2mplem5.x |  |-  X = ( var1 ` A ) | 
						
							| 12 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 13 | 12 | a1i |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> NN0 e. _V ) | 
						
							| 14 | 1 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 15 | 2 | ply1lmod |  |-  ( A e. Ring -> Q e. LMod ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. LMod ) | 
						
							| 17 | 16 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> Q e. LMod ) | 
						
							| 18 | 14 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> A e. Ring ) | 
						
							| 19 | 2 | ply1sca |  |-  ( A e. Ring -> A = ( Scalar ` Q ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> A = ( Scalar ` Q ) ) | 
						
							| 21 |  | simpl2 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> R e. Ring ) | 
						
							| 22 |  | eqid |  |-  ( N Mat P ) = ( N Mat P ) | 
						
							| 23 |  | eqid |  |-  ( Base ` ( N Mat P ) ) = ( Base ` ( N Mat P ) ) | 
						
							| 24 | 1 2 3 8 4 5 6 7 22 23 | mply1topmatcl |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( I ` O ) e. ( Base ` ( N Mat P ) ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( I ` O ) e. ( Base ` ( N Mat P ) ) ) | 
						
							| 26 |  | simpr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 27 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 28 | 8 22 23 1 27 | decpmatcl |  |-  ( ( R e. Ring /\ ( I ` O ) e. ( Base ` ( N Mat P ) ) /\ k e. NN0 ) -> ( ( I ` O ) decompPMat k ) e. ( Base ` A ) ) | 
						
							| 29 | 21 25 26 28 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( ( I ` O ) decompPMat k ) e. ( Base ` A ) ) | 
						
							| 30 |  | eqid |  |-  ( mulGrp ` Q ) = ( mulGrp ` Q ) | 
						
							| 31 | 2 11 30 10 3 | ply1moncl |  |-  ( ( A e. Ring /\ k e. NN0 ) -> ( k .^ X ) e. L ) | 
						
							| 32 | 18 31 | sylan |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( k .^ X ) e. L ) | 
						
							| 33 |  | eqid |  |-  ( 0g ` Q ) = ( 0g ` Q ) | 
						
							| 34 |  | eqid |  |-  ( 0g ` A ) = ( 0g ` A ) | 
						
							| 35 |  | fveq2 |  |-  ( k = l -> ( ( coe1 ` p ) ` k ) = ( ( coe1 ` p ) ` l ) ) | 
						
							| 36 | 35 | oveqd |  |-  ( k = l -> ( i ( ( coe1 ` p ) ` k ) j ) = ( i ( ( coe1 ` p ) ` l ) j ) ) | 
						
							| 37 |  | oveq1 |  |-  ( k = l -> ( k E Y ) = ( l E Y ) ) | 
						
							| 38 | 36 37 | oveq12d |  |-  ( k = l -> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) = ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) | 
						
							| 39 | 38 | cbvmptv |  |-  ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) = ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) | 
						
							| 40 | 39 | oveq2i |  |-  ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) = ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) | 
						
							| 41 | 40 | a1i |  |-  ( ( i e. N /\ j e. N ) -> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) = ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) ) | 
						
							| 42 | 41 | mpoeq3ia |  |-  ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) = ( i e. N , j e. N |-> ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) ) | 
						
							| 43 | 42 | mpteq2i |  |-  ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) ) ) | 
						
							| 44 | 7 43 | eqtri |  |-  I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) ) ) | 
						
							| 45 | 1 2 3 4 5 6 44 8 | mp2pm2mplem4 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( ( I ` O ) decompPMat k ) = ( ( coe1 ` O ) ` k ) ) | 
						
							| 46 | 45 | mpteq2dva |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( I ` O ) decompPMat k ) ) = ( k e. NN0 |-> ( ( coe1 ` O ) ` k ) ) ) | 
						
							| 47 | 2 3 34 | mptcoe1fsupp |  |-  ( ( A e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( coe1 ` O ) ` k ) ) finSupp ( 0g ` A ) ) | 
						
							| 48 | 14 47 | stoic3 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( coe1 ` O ) ` k ) ) finSupp ( 0g ` A ) ) | 
						
							| 49 | 46 48 | eqbrtrd |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( I ` O ) decompPMat k ) ) finSupp ( 0g ` A ) ) | 
						
							| 50 | 13 17 20 3 29 32 33 34 9 49 | mptscmfsupp0 |  |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( ( I ` O ) decompPMat k ) .* ( k .^ X ) ) ) finSupp ( 0g ` Q ) ) |