Metamath Proof Explorer


Theorem mp2pm2mplem5

Description: Lemma 5 for mp2pm2mp . (Contributed by AV, 12-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses mp2pm2mp.a
|- A = ( N Mat R )
mp2pm2mp.q
|- Q = ( Poly1 ` A )
mp2pm2mp.l
|- L = ( Base ` Q )
mp2pm2mp.m
|- .x. = ( .s ` P )
mp2pm2mp.e
|- E = ( .g ` ( mulGrp ` P ) )
mp2pm2mp.y
|- Y = ( var1 ` R )
mp2pm2mp.i
|- I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) )
mp2pm2mplem2.p
|- P = ( Poly1 ` R )
mp2pm2mplem5.m
|- .* = ( .s ` Q )
mp2pm2mplem5.e
|- .^ = ( .g ` ( mulGrp ` Q ) )
mp2pm2mplem5.x
|- X = ( var1 ` A )
Assertion mp2pm2mplem5
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( ( I ` O ) decompPMat k ) .* ( k .^ X ) ) ) finSupp ( 0g ` Q ) )

Proof

Step Hyp Ref Expression
1 mp2pm2mp.a
 |-  A = ( N Mat R )
2 mp2pm2mp.q
 |-  Q = ( Poly1 ` A )
3 mp2pm2mp.l
 |-  L = ( Base ` Q )
4 mp2pm2mp.m
 |-  .x. = ( .s ` P )
5 mp2pm2mp.e
 |-  E = ( .g ` ( mulGrp ` P ) )
6 mp2pm2mp.y
 |-  Y = ( var1 ` R )
7 mp2pm2mp.i
 |-  I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) )
8 mp2pm2mplem2.p
 |-  P = ( Poly1 ` R )
9 mp2pm2mplem5.m
 |-  .* = ( .s ` Q )
10 mp2pm2mplem5.e
 |-  .^ = ( .g ` ( mulGrp ` Q ) )
11 mp2pm2mplem5.x
 |-  X = ( var1 ` A )
12 nn0ex
 |-  NN0 e. _V
13 12 a1i
 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> NN0 e. _V )
14 1 matring
 |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring )
15 2 ply1lmod
 |-  ( A e. Ring -> Q e. LMod )
16 14 15 syl
 |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. LMod )
17 16 3adant3
 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> Q e. LMod )
18 14 3adant3
 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> A e. Ring )
19 2 ply1sca
 |-  ( A e. Ring -> A = ( Scalar ` Q ) )
20 18 19 syl
 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> A = ( Scalar ` Q ) )
21 simpl2
 |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> R e. Ring )
22 eqid
 |-  ( N Mat P ) = ( N Mat P )
23 eqid
 |-  ( Base ` ( N Mat P ) ) = ( Base ` ( N Mat P ) )
24 1 2 3 8 4 5 6 7 22 23 mply1topmatcl
 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( I ` O ) e. ( Base ` ( N Mat P ) ) )
25 24 adantr
 |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( I ` O ) e. ( Base ` ( N Mat P ) ) )
26 simpr
 |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> k e. NN0 )
27 eqid
 |-  ( Base ` A ) = ( Base ` A )
28 8 22 23 1 27 decpmatcl
 |-  ( ( R e. Ring /\ ( I ` O ) e. ( Base ` ( N Mat P ) ) /\ k e. NN0 ) -> ( ( I ` O ) decompPMat k ) e. ( Base ` A ) )
29 21 25 26 28 syl3anc
 |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( ( I ` O ) decompPMat k ) e. ( Base ` A ) )
30 eqid
 |-  ( mulGrp ` Q ) = ( mulGrp ` Q )
31 2 11 30 10 3 ply1moncl
 |-  ( ( A e. Ring /\ k e. NN0 ) -> ( k .^ X ) e. L )
32 18 31 sylan
 |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( k .^ X ) e. L )
33 eqid
 |-  ( 0g ` Q ) = ( 0g ` Q )
34 eqid
 |-  ( 0g ` A ) = ( 0g ` A )
35 fveq2
 |-  ( k = l -> ( ( coe1 ` p ) ` k ) = ( ( coe1 ` p ) ` l ) )
36 35 oveqd
 |-  ( k = l -> ( i ( ( coe1 ` p ) ` k ) j ) = ( i ( ( coe1 ` p ) ` l ) j ) )
37 oveq1
 |-  ( k = l -> ( k E Y ) = ( l E Y ) )
38 36 37 oveq12d
 |-  ( k = l -> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) = ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) )
39 38 cbvmptv
 |-  ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) = ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) )
40 39 oveq2i
 |-  ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) = ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) )
41 40 a1i
 |-  ( ( i e. N /\ j e. N ) -> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) = ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) )
42 41 mpoeq3ia
 |-  ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) = ( i e. N , j e. N |-> ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) )
43 42 mpteq2i
 |-  ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) ) )
44 7 43 eqtri
 |-  I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) ) )
45 1 2 3 4 5 6 44 8 mp2pm2mplem4
 |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( ( I ` O ) decompPMat k ) = ( ( coe1 ` O ) ` k ) )
46 45 mpteq2dva
 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( I ` O ) decompPMat k ) ) = ( k e. NN0 |-> ( ( coe1 ` O ) ` k ) ) )
47 2 3 34 mptcoe1fsupp
 |-  ( ( A e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( coe1 ` O ) ` k ) ) finSupp ( 0g ` A ) )
48 14 47 stoic3
 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( coe1 ` O ) ` k ) ) finSupp ( 0g ` A ) )
49 46 48 eqbrtrd
 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( I ` O ) decompPMat k ) ) finSupp ( 0g ` A ) )
50 13 17 20 3 29 32 33 34 9 49 mptscmfsupp0
 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( ( I ` O ) decompPMat k ) .* ( k .^ X ) ) ) finSupp ( 0g ` Q ) )