| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( ( A +P. D ) = ( B +P. C ) -> ( ( A +P. D ) .P. F ) = ( ( B +P. C ) .P. F ) ) | 
						
							| 2 |  | distrpr |  |-  ( F .P. ( A +P. D ) ) = ( ( F .P. A ) +P. ( F .P. D ) ) | 
						
							| 3 |  | mulcompr |  |-  ( ( A +P. D ) .P. F ) = ( F .P. ( A +P. D ) ) | 
						
							| 4 |  | mulcompr |  |-  ( A .P. F ) = ( F .P. A ) | 
						
							| 5 |  | mulcompr |  |-  ( D .P. F ) = ( F .P. D ) | 
						
							| 6 | 4 5 | oveq12i |  |-  ( ( A .P. F ) +P. ( D .P. F ) ) = ( ( F .P. A ) +P. ( F .P. D ) ) | 
						
							| 7 | 2 3 6 | 3eqtr4i |  |-  ( ( A +P. D ) .P. F ) = ( ( A .P. F ) +P. ( D .P. F ) ) | 
						
							| 8 |  | distrpr |  |-  ( F .P. ( B +P. C ) ) = ( ( F .P. B ) +P. ( F .P. C ) ) | 
						
							| 9 |  | mulcompr |  |-  ( ( B +P. C ) .P. F ) = ( F .P. ( B +P. C ) ) | 
						
							| 10 |  | mulcompr |  |-  ( B .P. F ) = ( F .P. B ) | 
						
							| 11 |  | mulcompr |  |-  ( C .P. F ) = ( F .P. C ) | 
						
							| 12 | 10 11 | oveq12i |  |-  ( ( B .P. F ) +P. ( C .P. F ) ) = ( ( F .P. B ) +P. ( F .P. C ) ) | 
						
							| 13 | 8 9 12 | 3eqtr4i |  |-  ( ( B +P. C ) .P. F ) = ( ( B .P. F ) +P. ( C .P. F ) ) | 
						
							| 14 | 1 7 13 | 3eqtr3g |  |-  ( ( A +P. D ) = ( B +P. C ) -> ( ( A .P. F ) +P. ( D .P. F ) ) = ( ( B .P. F ) +P. ( C .P. F ) ) ) | 
						
							| 15 | 14 | oveq1d |  |-  ( ( A +P. D ) = ( B +P. C ) -> ( ( ( A .P. F ) +P. ( D .P. F ) ) +P. ( C .P. S ) ) = ( ( ( B .P. F ) +P. ( C .P. F ) ) +P. ( C .P. S ) ) ) | 
						
							| 16 |  | addasspr |  |-  ( ( ( B .P. F ) +P. ( C .P. F ) ) +P. ( C .P. S ) ) = ( ( B .P. F ) +P. ( ( C .P. F ) +P. ( C .P. S ) ) ) | 
						
							| 17 |  | oveq2 |  |-  ( ( F +P. S ) = ( G +P. R ) -> ( C .P. ( F +P. S ) ) = ( C .P. ( G +P. R ) ) ) | 
						
							| 18 |  | distrpr |  |-  ( C .P. ( F +P. S ) ) = ( ( C .P. F ) +P. ( C .P. S ) ) | 
						
							| 19 |  | distrpr |  |-  ( C .P. ( G +P. R ) ) = ( ( C .P. G ) +P. ( C .P. R ) ) | 
						
							| 20 | 17 18 19 | 3eqtr3g |  |-  ( ( F +P. S ) = ( G +P. R ) -> ( ( C .P. F ) +P. ( C .P. S ) ) = ( ( C .P. G ) +P. ( C .P. R ) ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( ( F +P. S ) = ( G +P. R ) -> ( ( B .P. F ) +P. ( ( C .P. F ) +P. ( C .P. S ) ) ) = ( ( B .P. F ) +P. ( ( C .P. G ) +P. ( C .P. R ) ) ) ) | 
						
							| 22 | 16 21 | eqtrid |  |-  ( ( F +P. S ) = ( G +P. R ) -> ( ( ( B .P. F ) +P. ( C .P. F ) ) +P. ( C .P. S ) ) = ( ( B .P. F ) +P. ( ( C .P. G ) +P. ( C .P. R ) ) ) ) | 
						
							| 23 | 15 22 | sylan9eq |  |-  ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( ( A .P. F ) +P. ( D .P. F ) ) +P. ( C .P. S ) ) = ( ( B .P. F ) +P. ( ( C .P. G ) +P. ( C .P. R ) ) ) ) | 
						
							| 24 |  | ovex |  |-  ( A .P. F ) e. _V | 
						
							| 25 |  | ovex |  |-  ( D .P. F ) e. _V | 
						
							| 26 |  | ovex |  |-  ( C .P. S ) e. _V | 
						
							| 27 |  | addcompr |  |-  ( x +P. y ) = ( y +P. x ) | 
						
							| 28 |  | addasspr |  |-  ( ( x +P. y ) +P. z ) = ( x +P. ( y +P. z ) ) | 
						
							| 29 | 24 25 26 27 28 | caov32 |  |-  ( ( ( A .P. F ) +P. ( D .P. F ) ) +P. ( C .P. S ) ) = ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( D .P. F ) ) | 
						
							| 30 |  | ovex |  |-  ( B .P. F ) e. _V | 
						
							| 31 |  | ovex |  |-  ( C .P. G ) e. _V | 
						
							| 32 |  | ovex |  |-  ( C .P. R ) e. _V | 
						
							| 33 | 30 31 32 27 28 | caov12 |  |-  ( ( B .P. F ) +P. ( ( C .P. G ) +P. ( C .P. R ) ) ) = ( ( C .P. G ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) | 
						
							| 34 | 23 29 33 | 3eqtr3g |  |-  ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( D .P. F ) ) = ( ( C .P. G ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) | 
						
							| 35 | 34 | oveq2d |  |-  ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( D .P. F ) ) ) = ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( ( C .P. G ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) ) | 
						
							| 36 |  | oveq2 |  |-  ( ( F +P. S ) = ( G +P. R ) -> ( D .P. ( F +P. S ) ) = ( D .P. ( G +P. R ) ) ) | 
						
							| 37 |  | distrpr |  |-  ( D .P. ( F +P. S ) ) = ( ( D .P. F ) +P. ( D .P. S ) ) | 
						
							| 38 |  | distrpr |  |-  ( D .P. ( G +P. R ) ) = ( ( D .P. G ) +P. ( D .P. R ) ) | 
						
							| 39 | 36 37 38 | 3eqtr3g |  |-  ( ( F +P. S ) = ( G +P. R ) -> ( ( D .P. F ) +P. ( D .P. S ) ) = ( ( D .P. G ) +P. ( D .P. R ) ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ( F +P. S ) = ( G +P. R ) -> ( ( A .P. G ) +P. ( ( D .P. F ) +P. ( D .P. S ) ) ) = ( ( A .P. G ) +P. ( ( D .P. G ) +P. ( D .P. R ) ) ) ) | 
						
							| 41 |  | addasspr |  |-  ( ( ( A .P. G ) +P. ( D .P. G ) ) +P. ( D .P. R ) ) = ( ( A .P. G ) +P. ( ( D .P. G ) +P. ( D .P. R ) ) ) | 
						
							| 42 | 40 41 | eqtr4di |  |-  ( ( F +P. S ) = ( G +P. R ) -> ( ( A .P. G ) +P. ( ( D .P. F ) +P. ( D .P. S ) ) ) = ( ( ( A .P. G ) +P. ( D .P. G ) ) +P. ( D .P. R ) ) ) | 
						
							| 43 |  | oveq1 |  |-  ( ( A +P. D ) = ( B +P. C ) -> ( ( A +P. D ) .P. G ) = ( ( B +P. C ) .P. G ) ) | 
						
							| 44 |  | distrpr |  |-  ( G .P. ( A +P. D ) ) = ( ( G .P. A ) +P. ( G .P. D ) ) | 
						
							| 45 |  | mulcompr |  |-  ( ( A +P. D ) .P. G ) = ( G .P. ( A +P. D ) ) | 
						
							| 46 |  | mulcompr |  |-  ( A .P. G ) = ( G .P. A ) | 
						
							| 47 |  | mulcompr |  |-  ( D .P. G ) = ( G .P. D ) | 
						
							| 48 | 46 47 | oveq12i |  |-  ( ( A .P. G ) +P. ( D .P. G ) ) = ( ( G .P. A ) +P. ( G .P. D ) ) | 
						
							| 49 | 44 45 48 | 3eqtr4i |  |-  ( ( A +P. D ) .P. G ) = ( ( A .P. G ) +P. ( D .P. G ) ) | 
						
							| 50 |  | distrpr |  |-  ( G .P. ( B +P. C ) ) = ( ( G .P. B ) +P. ( G .P. C ) ) | 
						
							| 51 |  | mulcompr |  |-  ( ( B +P. C ) .P. G ) = ( G .P. ( B +P. C ) ) | 
						
							| 52 |  | mulcompr |  |-  ( B .P. G ) = ( G .P. B ) | 
						
							| 53 |  | mulcompr |  |-  ( C .P. G ) = ( G .P. C ) | 
						
							| 54 | 52 53 | oveq12i |  |-  ( ( B .P. G ) +P. ( C .P. G ) ) = ( ( G .P. B ) +P. ( G .P. C ) ) | 
						
							| 55 | 50 51 54 | 3eqtr4i |  |-  ( ( B +P. C ) .P. G ) = ( ( B .P. G ) +P. ( C .P. G ) ) | 
						
							| 56 | 43 49 55 | 3eqtr3g |  |-  ( ( A +P. D ) = ( B +P. C ) -> ( ( A .P. G ) +P. ( D .P. G ) ) = ( ( B .P. G ) +P. ( C .P. G ) ) ) | 
						
							| 57 | 56 | oveq1d |  |-  ( ( A +P. D ) = ( B +P. C ) -> ( ( ( A .P. G ) +P. ( D .P. G ) ) +P. ( D .P. R ) ) = ( ( ( B .P. G ) +P. ( C .P. G ) ) +P. ( D .P. R ) ) ) | 
						
							| 58 | 42 57 | sylan9eqr |  |-  ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( A .P. G ) +P. ( ( D .P. F ) +P. ( D .P. S ) ) ) = ( ( ( B .P. G ) +P. ( C .P. G ) ) +P. ( D .P. R ) ) ) | 
						
							| 59 |  | ovex |  |-  ( A .P. G ) e. _V | 
						
							| 60 |  | ovex |  |-  ( D .P. S ) e. _V | 
						
							| 61 | 59 25 60 27 28 | caov12 |  |-  ( ( A .P. G ) +P. ( ( D .P. F ) +P. ( D .P. S ) ) ) = ( ( D .P. F ) +P. ( ( A .P. G ) +P. ( D .P. S ) ) ) | 
						
							| 62 |  | ovex |  |-  ( B .P. G ) e. _V | 
						
							| 63 |  | ovex |  |-  ( D .P. R ) e. _V | 
						
							| 64 | 62 31 63 27 28 | caov32 |  |-  ( ( ( B .P. G ) +P. ( C .P. G ) ) +P. ( D .P. R ) ) = ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( C .P. G ) ) | 
						
							| 65 | 58 61 64 | 3eqtr3g |  |-  ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( D .P. F ) +P. ( ( A .P. G ) +P. ( D .P. S ) ) ) = ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( C .P. G ) ) ) | 
						
							| 66 | 65 | oveq1d |  |-  ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( ( D .P. F ) +P. ( ( A .P. G ) +P. ( D .P. S ) ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) = ( ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( C .P. G ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) | 
						
							| 67 |  | addasspr |  |-  ( ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( C .P. G ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) = ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( ( C .P. G ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) | 
						
							| 68 | 66 67 | eqtrdi |  |-  ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( ( D .P. F ) +P. ( ( A .P. G ) +P. ( D .P. S ) ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) = ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( ( C .P. G ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) ) | 
						
							| 69 | 35 68 | eqtr4d |  |-  ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( D .P. F ) ) ) = ( ( ( D .P. F ) +P. ( ( A .P. G ) +P. ( D .P. S ) ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) | 
						
							| 70 |  | ovex |  |-  ( ( B .P. G ) +P. ( D .P. R ) ) e. _V | 
						
							| 71 |  | ovex |  |-  ( ( A .P. F ) +P. ( C .P. S ) ) e. _V | 
						
							| 72 | 70 71 25 27 28 | caov13 |  |-  ( ( ( B .P. G ) +P. ( D .P. R ) ) +P. ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( D .P. F ) ) ) = ( ( D .P. F ) +P. ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( ( B .P. G ) +P. ( D .P. R ) ) ) ) | 
						
							| 73 |  | addasspr |  |-  ( ( ( D .P. F ) +P. ( ( A .P. G ) +P. ( D .P. S ) ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) = ( ( D .P. F ) +P. ( ( ( A .P. G ) +P. ( D .P. S ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) | 
						
							| 74 | 69 72 73 | 3eqtr3g |  |-  ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( D .P. F ) +P. ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( ( B .P. G ) +P. ( D .P. R ) ) ) ) = ( ( D .P. F ) +P. ( ( ( A .P. G ) +P. ( D .P. S ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) ) | 
						
							| 75 | 24 26 62 27 28 63 | caov4 |  |-  ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( ( B .P. G ) +P. ( D .P. R ) ) ) = ( ( ( A .P. F ) +P. ( B .P. G ) ) +P. ( ( C .P. S ) +P. ( D .P. R ) ) ) | 
						
							| 76 | 75 | oveq2i |  |-  ( ( D .P. F ) +P. ( ( ( A .P. F ) +P. ( C .P. S ) ) +P. ( ( B .P. G ) +P. ( D .P. R ) ) ) ) = ( ( D .P. F ) +P. ( ( ( A .P. F ) +P. ( B .P. G ) ) +P. ( ( C .P. S ) +P. ( D .P. R ) ) ) ) | 
						
							| 77 | 59 60 30 27 28 32 | caov42 |  |-  ( ( ( A .P. G ) +P. ( D .P. S ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) = ( ( ( A .P. G ) +P. ( B .P. F ) ) +P. ( ( C .P. R ) +P. ( D .P. S ) ) ) | 
						
							| 78 | 77 | oveq2i |  |-  ( ( D .P. F ) +P. ( ( ( A .P. G ) +P. ( D .P. S ) ) +P. ( ( B .P. F ) +P. ( C .P. R ) ) ) ) = ( ( D .P. F ) +P. ( ( ( A .P. G ) +P. ( B .P. F ) ) +P. ( ( C .P. R ) +P. ( D .P. S ) ) ) ) | 
						
							| 79 | 74 76 78 | 3eqtr3g |  |-  ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( D .P. F ) +P. ( ( ( A .P. F ) +P. ( B .P. G ) ) +P. ( ( C .P. S ) +P. ( D .P. R ) ) ) ) = ( ( D .P. F ) +P. ( ( ( A .P. G ) +P. ( B .P. F ) ) +P. ( ( C .P. R ) +P. ( D .P. S ) ) ) ) ) |