| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  →  ( ( 𝐴  +P  𝐷 )  ·P  𝐹 )  =  ( ( 𝐵  +P  𝐶 )  ·P  𝐹 ) ) | 
						
							| 2 |  | distrpr | ⊢ ( 𝐹  ·P  ( 𝐴  +P  𝐷 ) )  =  ( ( 𝐹  ·P  𝐴 )  +P  ( 𝐹  ·P  𝐷 ) ) | 
						
							| 3 |  | mulcompr | ⊢ ( ( 𝐴  +P  𝐷 )  ·P  𝐹 )  =  ( 𝐹  ·P  ( 𝐴  +P  𝐷 ) ) | 
						
							| 4 |  | mulcompr | ⊢ ( 𝐴  ·P  𝐹 )  =  ( 𝐹  ·P  𝐴 ) | 
						
							| 5 |  | mulcompr | ⊢ ( 𝐷  ·P  𝐹 )  =  ( 𝐹  ·P  𝐷 ) | 
						
							| 6 | 4 5 | oveq12i | ⊢ ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐷  ·P  𝐹 ) )  =  ( ( 𝐹  ·P  𝐴 )  +P  ( 𝐹  ·P  𝐷 ) ) | 
						
							| 7 | 2 3 6 | 3eqtr4i | ⊢ ( ( 𝐴  +P  𝐷 )  ·P  𝐹 )  =  ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐷  ·P  𝐹 ) ) | 
						
							| 8 |  | distrpr | ⊢ ( 𝐹  ·P  ( 𝐵  +P  𝐶 ) )  =  ( ( 𝐹  ·P  𝐵 )  +P  ( 𝐹  ·P  𝐶 ) ) | 
						
							| 9 |  | mulcompr | ⊢ ( ( 𝐵  +P  𝐶 )  ·P  𝐹 )  =  ( 𝐹  ·P  ( 𝐵  +P  𝐶 ) ) | 
						
							| 10 |  | mulcompr | ⊢ ( 𝐵  ·P  𝐹 )  =  ( 𝐹  ·P  𝐵 ) | 
						
							| 11 |  | mulcompr | ⊢ ( 𝐶  ·P  𝐹 )  =  ( 𝐹  ·P  𝐶 ) | 
						
							| 12 | 10 11 | oveq12i | ⊢ ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝐹 ) )  =  ( ( 𝐹  ·P  𝐵 )  +P  ( 𝐹  ·P  𝐶 ) ) | 
						
							| 13 | 8 9 12 | 3eqtr4i | ⊢ ( ( 𝐵  +P  𝐶 )  ·P  𝐹 )  =  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝐹 ) ) | 
						
							| 14 | 1 7 13 | 3eqtr3g | ⊢ ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  →  ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐷  ·P  𝐹 ) )  =  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝐹 ) ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  →  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐷  ·P  𝐹 ) )  +P  ( 𝐶  ·P  𝑆 ) )  =  ( ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝐹 ) )  +P  ( 𝐶  ·P  𝑆 ) ) ) | 
						
							| 16 |  | addasspr | ⊢ ( ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝐹 ) )  +P  ( 𝐶  ·P  𝑆 ) )  =  ( ( 𝐵  ·P  𝐹 )  +P  ( ( 𝐶  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑆 ) ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 )  →  ( 𝐶  ·P  ( 𝐹  +P  𝑆 ) )  =  ( 𝐶  ·P  ( 𝐺  +P  𝑅 ) ) ) | 
						
							| 18 |  | distrpr | ⊢ ( 𝐶  ·P  ( 𝐹  +P  𝑆 ) )  =  ( ( 𝐶  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑆 ) ) | 
						
							| 19 |  | distrpr | ⊢ ( 𝐶  ·P  ( 𝐺  +P  𝑅 ) )  =  ( ( 𝐶  ·P  𝐺 )  +P  ( 𝐶  ·P  𝑅 ) ) | 
						
							| 20 | 17 18 19 | 3eqtr3g | ⊢ ( ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 )  →  ( ( 𝐶  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑆 ) )  =  ( ( 𝐶  ·P  𝐺 )  +P  ( 𝐶  ·P  𝑅 ) ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 )  →  ( ( 𝐵  ·P  𝐹 )  +P  ( ( 𝐶  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑆 ) ) )  =  ( ( 𝐵  ·P  𝐹 )  +P  ( ( 𝐶  ·P  𝐺 )  +P  ( 𝐶  ·P  𝑅 ) ) ) ) | 
						
							| 22 | 16 21 | eqtrid | ⊢ ( ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 )  →  ( ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝐹 ) )  +P  ( 𝐶  ·P  𝑆 ) )  =  ( ( 𝐵  ·P  𝐹 )  +P  ( ( 𝐶  ·P  𝐺 )  +P  ( 𝐶  ·P  𝑅 ) ) ) ) | 
						
							| 23 | 15 22 | sylan9eq | ⊢ ( ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  ∧  ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 ) )  →  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐷  ·P  𝐹 ) )  +P  ( 𝐶  ·P  𝑆 ) )  =  ( ( 𝐵  ·P  𝐹 )  +P  ( ( 𝐶  ·P  𝐺 )  +P  ( 𝐶  ·P  𝑅 ) ) ) ) | 
						
							| 24 |  | ovex | ⊢ ( 𝐴  ·P  𝐹 )  ∈  V | 
						
							| 25 |  | ovex | ⊢ ( 𝐷  ·P  𝐹 )  ∈  V | 
						
							| 26 |  | ovex | ⊢ ( 𝐶  ·P  𝑆 )  ∈  V | 
						
							| 27 |  | addcompr | ⊢ ( 𝑥  +P  𝑦 )  =  ( 𝑦  +P  𝑥 ) | 
						
							| 28 |  | addasspr | ⊢ ( ( 𝑥  +P  𝑦 )  +P  𝑧 )  =  ( 𝑥  +P  ( 𝑦  +P  𝑧 ) ) | 
						
							| 29 | 24 25 26 27 28 | caov32 | ⊢ ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐷  ·P  𝐹 ) )  +P  ( 𝐶  ·P  𝑆 ) )  =  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑆 ) )  +P  ( 𝐷  ·P  𝐹 ) ) | 
						
							| 30 |  | ovex | ⊢ ( 𝐵  ·P  𝐹 )  ∈  V | 
						
							| 31 |  | ovex | ⊢ ( 𝐶  ·P  𝐺 )  ∈  V | 
						
							| 32 |  | ovex | ⊢ ( 𝐶  ·P  𝑅 )  ∈  V | 
						
							| 33 | 30 31 32 27 28 | caov12 | ⊢ ( ( 𝐵  ·P  𝐹 )  +P  ( ( 𝐶  ·P  𝐺 )  +P  ( 𝐶  ·P  𝑅 ) ) )  =  ( ( 𝐶  ·P  𝐺 )  +P  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑅 ) ) ) | 
						
							| 34 | 23 29 33 | 3eqtr3g | ⊢ ( ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  ∧  ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 ) )  →  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑆 ) )  +P  ( 𝐷  ·P  𝐹 ) )  =  ( ( 𝐶  ·P  𝐺 )  +P  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑅 ) ) ) ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  ∧  ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 ) )  →  ( ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) )  +P  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑆 ) )  +P  ( 𝐷  ·P  𝐹 ) ) )  =  ( ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) )  +P  ( ( 𝐶  ·P  𝐺 )  +P  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑅 ) ) ) ) ) | 
						
							| 36 |  | oveq2 | ⊢ ( ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 )  →  ( 𝐷  ·P  ( 𝐹  +P  𝑆 ) )  =  ( 𝐷  ·P  ( 𝐺  +P  𝑅 ) ) ) | 
						
							| 37 |  | distrpr | ⊢ ( 𝐷  ·P  ( 𝐹  +P  𝑆 ) )  =  ( ( 𝐷  ·P  𝐹 )  +P  ( 𝐷  ·P  𝑆 ) ) | 
						
							| 38 |  | distrpr | ⊢ ( 𝐷  ·P  ( 𝐺  +P  𝑅 ) )  =  ( ( 𝐷  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) ) | 
						
							| 39 | 36 37 38 | 3eqtr3g | ⊢ ( ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 )  →  ( ( 𝐷  ·P  𝐹 )  +P  ( 𝐷  ·P  𝑆 ) )  =  ( ( 𝐷  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 )  →  ( ( 𝐴  ·P  𝐺 )  +P  ( ( 𝐷  ·P  𝐹 )  +P  ( 𝐷  ·P  𝑆 ) ) )  =  ( ( 𝐴  ·P  𝐺 )  +P  ( ( 𝐷  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) ) ) ) | 
						
							| 41 |  | addasspr | ⊢ ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝐺 ) )  +P  ( 𝐷  ·P  𝑅 ) )  =  ( ( 𝐴  ·P  𝐺 )  +P  ( ( 𝐷  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) ) ) | 
						
							| 42 | 40 41 | eqtr4di | ⊢ ( ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 )  →  ( ( 𝐴  ·P  𝐺 )  +P  ( ( 𝐷  ·P  𝐹 )  +P  ( 𝐷  ·P  𝑆 ) ) )  =  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝐺 ) )  +P  ( 𝐷  ·P  𝑅 ) ) ) | 
						
							| 43 |  | oveq1 | ⊢ ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  →  ( ( 𝐴  +P  𝐷 )  ·P  𝐺 )  =  ( ( 𝐵  +P  𝐶 )  ·P  𝐺 ) ) | 
						
							| 44 |  | distrpr | ⊢ ( 𝐺  ·P  ( 𝐴  +P  𝐷 ) )  =  ( ( 𝐺  ·P  𝐴 )  +P  ( 𝐺  ·P  𝐷 ) ) | 
						
							| 45 |  | mulcompr | ⊢ ( ( 𝐴  +P  𝐷 )  ·P  𝐺 )  =  ( 𝐺  ·P  ( 𝐴  +P  𝐷 ) ) | 
						
							| 46 |  | mulcompr | ⊢ ( 𝐴  ·P  𝐺 )  =  ( 𝐺  ·P  𝐴 ) | 
						
							| 47 |  | mulcompr | ⊢ ( 𝐷  ·P  𝐺 )  =  ( 𝐺  ·P  𝐷 ) | 
						
							| 48 | 46 47 | oveq12i | ⊢ ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝐺 ) )  =  ( ( 𝐺  ·P  𝐴 )  +P  ( 𝐺  ·P  𝐷 ) ) | 
						
							| 49 | 44 45 48 | 3eqtr4i | ⊢ ( ( 𝐴  +P  𝐷 )  ·P  𝐺 )  =  ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝐺 ) ) | 
						
							| 50 |  | distrpr | ⊢ ( 𝐺  ·P  ( 𝐵  +P  𝐶 ) )  =  ( ( 𝐺  ·P  𝐵 )  +P  ( 𝐺  ·P  𝐶 ) ) | 
						
							| 51 |  | mulcompr | ⊢ ( ( 𝐵  +P  𝐶 )  ·P  𝐺 )  =  ( 𝐺  ·P  ( 𝐵  +P  𝐶 ) ) | 
						
							| 52 |  | mulcompr | ⊢ ( 𝐵  ·P  𝐺 )  =  ( 𝐺  ·P  𝐵 ) | 
						
							| 53 |  | mulcompr | ⊢ ( 𝐶  ·P  𝐺 )  =  ( 𝐺  ·P  𝐶 ) | 
						
							| 54 | 52 53 | oveq12i | ⊢ ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐶  ·P  𝐺 ) )  =  ( ( 𝐺  ·P  𝐵 )  +P  ( 𝐺  ·P  𝐶 ) ) | 
						
							| 55 | 50 51 54 | 3eqtr4i | ⊢ ( ( 𝐵  +P  𝐶 )  ·P  𝐺 )  =  ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐶  ·P  𝐺 ) ) | 
						
							| 56 | 43 49 55 | 3eqtr3g | ⊢ ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  →  ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝐺 ) )  =  ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐶  ·P  𝐺 ) ) ) | 
						
							| 57 | 56 | oveq1d | ⊢ ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  →  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝐺 ) )  +P  ( 𝐷  ·P  𝑅 ) )  =  ( ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐶  ·P  𝐺 ) )  +P  ( 𝐷  ·P  𝑅 ) ) ) | 
						
							| 58 | 42 57 | sylan9eqr | ⊢ ( ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  ∧  ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 ) )  →  ( ( 𝐴  ·P  𝐺 )  +P  ( ( 𝐷  ·P  𝐹 )  +P  ( 𝐷  ·P  𝑆 ) ) )  =  ( ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐶  ·P  𝐺 ) )  +P  ( 𝐷  ·P  𝑅 ) ) ) | 
						
							| 59 |  | ovex | ⊢ ( 𝐴  ·P  𝐺 )  ∈  V | 
						
							| 60 |  | ovex | ⊢ ( 𝐷  ·P  𝑆 )  ∈  V | 
						
							| 61 | 59 25 60 27 28 | caov12 | ⊢ ( ( 𝐴  ·P  𝐺 )  +P  ( ( 𝐷  ·P  𝐹 )  +P  ( 𝐷  ·P  𝑆 ) ) )  =  ( ( 𝐷  ·P  𝐹 )  +P  ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑆 ) ) ) | 
						
							| 62 |  | ovex | ⊢ ( 𝐵  ·P  𝐺 )  ∈  V | 
						
							| 63 |  | ovex | ⊢ ( 𝐷  ·P  𝑅 )  ∈  V | 
						
							| 64 | 62 31 63 27 28 | caov32 | ⊢ ( ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐶  ·P  𝐺 ) )  +P  ( 𝐷  ·P  𝑅 ) )  =  ( ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) )  +P  ( 𝐶  ·P  𝐺 ) ) | 
						
							| 65 | 58 61 64 | 3eqtr3g | ⊢ ( ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  ∧  ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 ) )  →  ( ( 𝐷  ·P  𝐹 )  +P  ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑆 ) ) )  =  ( ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) )  +P  ( 𝐶  ·P  𝐺 ) ) ) | 
						
							| 66 | 65 | oveq1d | ⊢ ( ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  ∧  ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 ) )  →  ( ( ( 𝐷  ·P  𝐹 )  +P  ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑆 ) ) )  +P  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑅 ) ) )  =  ( ( ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) )  +P  ( 𝐶  ·P  𝐺 ) )  +P  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑅 ) ) ) ) | 
						
							| 67 |  | addasspr | ⊢ ( ( ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) )  +P  ( 𝐶  ·P  𝐺 ) )  +P  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑅 ) ) )  =  ( ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) )  +P  ( ( 𝐶  ·P  𝐺 )  +P  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑅 ) ) ) ) | 
						
							| 68 | 66 67 | eqtrdi | ⊢ ( ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  ∧  ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 ) )  →  ( ( ( 𝐷  ·P  𝐹 )  +P  ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑆 ) ) )  +P  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑅 ) ) )  =  ( ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) )  +P  ( ( 𝐶  ·P  𝐺 )  +P  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑅 ) ) ) ) ) | 
						
							| 69 | 35 68 | eqtr4d | ⊢ ( ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  ∧  ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 ) )  →  ( ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) )  +P  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑆 ) )  +P  ( 𝐷  ·P  𝐹 ) ) )  =  ( ( ( 𝐷  ·P  𝐹 )  +P  ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑆 ) ) )  +P  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑅 ) ) ) ) | 
						
							| 70 |  | ovex | ⊢ ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) )  ∈  V | 
						
							| 71 |  | ovex | ⊢ ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑆 ) )  ∈  V | 
						
							| 72 | 70 71 25 27 28 | caov13 | ⊢ ( ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) )  +P  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑆 ) )  +P  ( 𝐷  ·P  𝐹 ) ) )  =  ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑆 ) )  +P  ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) ) ) ) | 
						
							| 73 |  | addasspr | ⊢ ( ( ( 𝐷  ·P  𝐹 )  +P  ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑆 ) ) )  +P  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑅 ) ) )  =  ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑆 ) )  +P  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑅 ) ) ) ) | 
						
							| 74 | 69 72 73 | 3eqtr3g | ⊢ ( ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  ∧  ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 ) )  →  ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑆 ) )  +P  ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) ) ) )  =  ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑆 ) )  +P  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑅 ) ) ) ) ) | 
						
							| 75 | 24 26 62 27 28 63 | caov4 | ⊢ ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑆 ) )  +P  ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) ) )  =  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  +P  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) ) | 
						
							| 76 | 75 | oveq2i | ⊢ ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑆 ) )  +P  ( ( 𝐵  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑅 ) ) ) )  =  ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  +P  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) ) ) | 
						
							| 77 | 59 60 30 27 28 32 | caov42 | ⊢ ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑆 ) )  +P  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑅 ) ) )  =  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) )  +P  ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) ) ) | 
						
							| 78 | 77 | oveq2i | ⊢ ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐷  ·P  𝑆 ) )  +P  ( ( 𝐵  ·P  𝐹 )  +P  ( 𝐶  ·P  𝑅 ) ) ) )  =  ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) )  +P  ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) ) ) ) | 
						
							| 79 | 74 76 78 | 3eqtr3g | ⊢ ( ( ( 𝐴  +P  𝐷 )  =  ( 𝐵  +P  𝐶 )  ∧  ( 𝐹  +P  𝑆 )  =  ( 𝐺  +P  𝑅 ) )  →  ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐹 )  +P  ( 𝐵  ·P  𝐺 ) )  +P  ( ( 𝐶  ·P  𝑆 )  +P  ( 𝐷  ·P  𝑅 ) ) ) )  =  ( ( 𝐷  ·P  𝐹 )  +P  ( ( ( 𝐴  ·P  𝐺 )  +P  ( 𝐵  ·P  𝐹 ) )  +P  ( ( 𝐶  ·P  𝑅 )  +P  ( 𝐷  ·P  𝑆 ) ) ) ) ) |