| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0ons |
|- ( A e. NN0_s -> A e. On_s ) |
| 2 |
|
onscutlt |
|- ( A e. On_s -> A = ( { x e. On_s | x |
| 3 |
1 2
|
syl |
|- ( A e. NN0_s -> A = ( { x e. On_s | x |
| 4 |
|
onltn0s |
|- ( ( x e. On_s /\ A e. NN0_s /\ x x e. NN0_s ) |
| 5 |
4
|
3expib |
|- ( x e. On_s -> ( ( A e. NN0_s /\ x x e. NN0_s ) ) |
| 6 |
5
|
com12 |
|- ( ( A e. NN0_s /\ x ( x e. On_s -> x e. NN0_s ) ) |
| 7 |
|
n0ons |
|- ( x e. NN0_s -> x e. On_s ) |
| 8 |
6 7
|
impbid1 |
|- ( ( A e. NN0_s /\ x ( x e. On_s <-> x e. NN0_s ) ) |
| 9 |
8
|
ex |
|- ( A e. NN0_s -> ( x ( x e. On_s <-> x e. NN0_s ) ) ) |
| 10 |
9
|
pm5.32rd |
|- ( A e. NN0_s -> ( ( x e. On_s /\ x ( x e. NN0_s /\ x |
| 11 |
10
|
rabbidva2 |
|- ( A e. NN0_s -> { x e. On_s | x |
| 12 |
11
|
oveq1d |
|- ( A e. NN0_s -> ( { x e. On_s | x |
| 13 |
3 12
|
eqtrd |
|- ( A e. NN0_s -> A = ( { x e. NN0_s | x |