Metamath Proof Explorer


Theorem n0cutlt

Description: A non-negative surreal integer is the simplest number greater than all previous non-negative surreal integers. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion n0cutlt
|- ( A e. NN0_s -> A = ( { x e. NN0_s | x 

Proof

Step Hyp Ref Expression
1 n0ons
 |-  ( A e. NN0_s -> A e. On_s )
2 onscutlt
 |-  ( A e. On_s -> A = ( { x e. On_s | x 
3 1 2 syl
 |-  ( A e. NN0_s -> A = ( { x e. On_s | x 
4 onltn0s
 |-  ( ( x e. On_s /\ A e. NN0_s /\ x  x e. NN0_s )
5 4 3expib
 |-  ( x e. On_s -> ( ( A e. NN0_s /\ x  x e. NN0_s ) )
6 5 com12
 |-  ( ( A e. NN0_s /\ x  ( x e. On_s -> x e. NN0_s ) )
7 n0ons
 |-  ( x e. NN0_s -> x e. On_s )
8 6 7 impbid1
 |-  ( ( A e. NN0_s /\ x  ( x e. On_s <-> x e. NN0_s ) )
9 8 ex
 |-  ( A e. NN0_s -> ( x  ( x e. On_s <-> x e. NN0_s ) ) )
10 9 pm5.32rd
 |-  ( A e. NN0_s -> ( ( x e. On_s /\ x  ( x e. NN0_s /\ x 
11 10 rabbidva2
 |-  ( A e. NN0_s -> { x e. On_s | x 
12 11 oveq1d
 |-  ( A e. NN0_s -> ( { x e. On_s | x 
13 3 12 eqtrd
 |-  ( A e. NN0_s -> A = ( { x e. NN0_s | x