Metamath Proof Explorer


Theorem n0cutlt

Description: A non-negative surreal integer is the simplest number greater than all previous non-negative surreal integers. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion n0cutlt ( 𝐴 ∈ ℕ0s𝐴 = ( { 𝑥 ∈ ℕ0s𝑥 <s 𝐴 } |s ∅ ) )

Proof

Step Hyp Ref Expression
1 n0ons ( 𝐴 ∈ ℕ0s𝐴 ∈ Ons )
2 onscutlt ( 𝐴 ∈ Ons𝐴 = ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } |s ∅ ) )
3 1 2 syl ( 𝐴 ∈ ℕ0s𝐴 = ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } |s ∅ ) )
4 onltn0s ( ( 𝑥 ∈ Ons𝐴 ∈ ℕ0s𝑥 <s 𝐴 ) → 𝑥 ∈ ℕ0s )
5 4 3expib ( 𝑥 ∈ Ons → ( ( 𝐴 ∈ ℕ0s𝑥 <s 𝐴 ) → 𝑥 ∈ ℕ0s ) )
6 5 com12 ( ( 𝐴 ∈ ℕ0s𝑥 <s 𝐴 ) → ( 𝑥 ∈ Ons𝑥 ∈ ℕ0s ) )
7 n0ons ( 𝑥 ∈ ℕ0s𝑥 ∈ Ons )
8 6 7 impbid1 ( ( 𝐴 ∈ ℕ0s𝑥 <s 𝐴 ) → ( 𝑥 ∈ Ons𝑥 ∈ ℕ0s ) )
9 8 ex ( 𝐴 ∈ ℕ0s → ( 𝑥 <s 𝐴 → ( 𝑥 ∈ Ons𝑥 ∈ ℕ0s ) ) )
10 9 pm5.32rd ( 𝐴 ∈ ℕ0s → ( ( 𝑥 ∈ Ons𝑥 <s 𝐴 ) ↔ ( 𝑥 ∈ ℕ0s𝑥 <s 𝐴 ) ) )
11 10 rabbidva2 ( 𝐴 ∈ ℕ0s → { 𝑥 ∈ Ons𝑥 <s 𝐴 } = { 𝑥 ∈ ℕ0s𝑥 <s 𝐴 } )
12 11 oveq1d ( 𝐴 ∈ ℕ0s → ( { 𝑥 ∈ Ons𝑥 <s 𝐴 } |s ∅ ) = ( { 𝑥 ∈ ℕ0s𝑥 <s 𝐴 } |s ∅ ) )
13 3 12 eqtrd ( 𝐴 ∈ ℕ0s𝐴 = ( { 𝑥 ∈ ℕ0s𝑥 <s 𝐴 } |s ∅ ) )