| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0ons |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 ∈ Ons ) |
| 2 |
|
onscutlt |
⊢ ( 𝐴 ∈ Ons → 𝐴 = ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } |s ∅ ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 = ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } |s ∅ ) ) |
| 4 |
|
onltn0s |
⊢ ( ( 𝑥 ∈ Ons ∧ 𝐴 ∈ ℕ0s ∧ 𝑥 <s 𝐴 ) → 𝑥 ∈ ℕ0s ) |
| 5 |
4
|
3expib |
⊢ ( 𝑥 ∈ Ons → ( ( 𝐴 ∈ ℕ0s ∧ 𝑥 <s 𝐴 ) → 𝑥 ∈ ℕ0s ) ) |
| 6 |
5
|
com12 |
⊢ ( ( 𝐴 ∈ ℕ0s ∧ 𝑥 <s 𝐴 ) → ( 𝑥 ∈ Ons → 𝑥 ∈ ℕ0s ) ) |
| 7 |
|
n0ons |
⊢ ( 𝑥 ∈ ℕ0s → 𝑥 ∈ Ons ) |
| 8 |
6 7
|
impbid1 |
⊢ ( ( 𝐴 ∈ ℕ0s ∧ 𝑥 <s 𝐴 ) → ( 𝑥 ∈ Ons ↔ 𝑥 ∈ ℕ0s ) ) |
| 9 |
8
|
ex |
⊢ ( 𝐴 ∈ ℕ0s → ( 𝑥 <s 𝐴 → ( 𝑥 ∈ Ons ↔ 𝑥 ∈ ℕ0s ) ) ) |
| 10 |
9
|
pm5.32rd |
⊢ ( 𝐴 ∈ ℕ0s → ( ( 𝑥 ∈ Ons ∧ 𝑥 <s 𝐴 ) ↔ ( 𝑥 ∈ ℕ0s ∧ 𝑥 <s 𝐴 ) ) ) |
| 11 |
10
|
rabbidva2 |
⊢ ( 𝐴 ∈ ℕ0s → { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } = { 𝑥 ∈ ℕ0s ∣ 𝑥 <s 𝐴 } ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝐴 ∈ ℕ0s → ( { 𝑥 ∈ Ons ∣ 𝑥 <s 𝐴 } |s ∅ ) = ( { 𝑥 ∈ ℕ0s ∣ 𝑥 <s 𝐴 } |s ∅ ) ) |
| 13 |
3 12
|
eqtrd |
⊢ ( 𝐴 ∈ ℕ0s → 𝐴 = ( { 𝑥 ∈ ℕ0s ∣ 𝑥 <s 𝐴 } |s ∅ ) ) |