| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ ℕ0s ∧ 𝐴 <s 𝐵 ) → 𝐴 ∈ Ons ) |
| 2 |
|
n0ons |
⊢ ( 𝐵 ∈ ℕ0s → 𝐵 ∈ Ons ) |
| 3 |
|
onslt |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( 𝐴 <s 𝐵 ↔ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) ) |
| 4 |
2 3
|
sylan2 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ ℕ0s ) → ( 𝐴 <s 𝐵 ↔ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) ) |
| 5 |
4
|
biimp3a |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ ℕ0s ∧ 𝐴 <s 𝐵 ) → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) |
| 6 |
|
n0sbday |
⊢ ( 𝐵 ∈ ℕ0s → ( bday ‘ 𝐵 ) ∈ ω ) |
| 7 |
6
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ ℕ0s ∧ 𝐴 <s 𝐵 ) → ( bday ‘ 𝐵 ) ∈ ω ) |
| 8 |
|
elnn |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ∧ ( bday ‘ 𝐵 ) ∈ ω ) → ( bday ‘ 𝐴 ) ∈ ω ) |
| 9 |
5 7 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ ℕ0s ∧ 𝐴 <s 𝐵 ) → ( bday ‘ 𝐴 ) ∈ ω ) |
| 10 |
|
onsfi |
⊢ ( ( 𝐴 ∈ Ons ∧ ( bday ‘ 𝐴 ) ∈ ω ) → 𝐴 ∈ ℕ0s ) |
| 11 |
1 9 10
|
syl2anc |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ ℕ0s ∧ 𝐴 <s 𝐵 ) → 𝐴 ∈ ℕ0s ) |