Metamath Proof Explorer


Theorem onltn0s

Description: A surreal ordinal that is less than a non-negative integer is a non-negative integer. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion onltn0s ( ( 𝐴 ∈ Ons𝐵 ∈ ℕ0s𝐴 <s 𝐵 ) → 𝐴 ∈ ℕ0s )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴 ∈ Ons𝐵 ∈ ℕ0s𝐴 <s 𝐵 ) → 𝐴 ∈ Ons )
2 n0ons ( 𝐵 ∈ ℕ0s𝐵 ∈ Ons )
3 onslt ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → ( 𝐴 <s 𝐵 ↔ ( bday 𝐴 ) ∈ ( bday 𝐵 ) ) )
4 2 3 sylan2 ( ( 𝐴 ∈ Ons𝐵 ∈ ℕ0s ) → ( 𝐴 <s 𝐵 ↔ ( bday 𝐴 ) ∈ ( bday 𝐵 ) ) )
5 4 biimp3a ( ( 𝐴 ∈ Ons𝐵 ∈ ℕ0s𝐴 <s 𝐵 ) → ( bday 𝐴 ) ∈ ( bday 𝐵 ) )
6 n0sbday ( 𝐵 ∈ ℕ0s → ( bday 𝐵 ) ∈ ω )
7 6 3ad2ant2 ( ( 𝐴 ∈ Ons𝐵 ∈ ℕ0s𝐴 <s 𝐵 ) → ( bday 𝐵 ) ∈ ω )
8 elnn ( ( ( bday 𝐴 ) ∈ ( bday 𝐵 ) ∧ ( bday 𝐵 ) ∈ ω ) → ( bday 𝐴 ) ∈ ω )
9 5 7 8 syl2anc ( ( 𝐴 ∈ Ons𝐵 ∈ ℕ0s𝐴 <s 𝐵 ) → ( bday 𝐴 ) ∈ ω )
10 onsfi ( ( 𝐴 ∈ Ons ∧ ( bday 𝐴 ) ∈ ω ) → 𝐴 ∈ ℕ0s )
11 1 9 10 syl2anc ( ( 𝐴 ∈ Ons𝐵 ∈ ℕ0s𝐴 <s 𝐵 ) → 𝐴 ∈ ℕ0s )