| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( A e. On_s /\ B e. NN0_s /\ A A e. On_s ) |
| 2 |
|
n0ons |
|- ( B e. NN0_s -> B e. On_s ) |
| 3 |
|
onslt |
|- ( ( A e. On_s /\ B e. On_s ) -> ( A ( bday ` A ) e. ( bday ` B ) ) ) |
| 4 |
2 3
|
sylan2 |
|- ( ( A e. On_s /\ B e. NN0_s ) -> ( A ( bday ` A ) e. ( bday ` B ) ) ) |
| 5 |
4
|
biimp3a |
|- ( ( A e. On_s /\ B e. NN0_s /\ A ( bday ` A ) e. ( bday ` B ) ) |
| 6 |
|
n0sbday |
|- ( B e. NN0_s -> ( bday ` B ) e. _om ) |
| 7 |
6
|
3ad2ant2 |
|- ( ( A e. On_s /\ B e. NN0_s /\ A ( bday ` B ) e. _om ) |
| 8 |
|
elnn |
|- ( ( ( bday ` A ) e. ( bday ` B ) /\ ( bday ` B ) e. _om ) -> ( bday ` A ) e. _om ) |
| 9 |
5 7 8
|
syl2anc |
|- ( ( A e. On_s /\ B e. NN0_s /\ A ( bday ` A ) e. _om ) |
| 10 |
|
onsfi |
|- ( ( A e. On_s /\ ( bday ` A ) e. _om ) -> A e. NN0_s ) |
| 11 |
1 9 10
|
syl2anc |
|- ( ( A e. On_s /\ B e. NN0_s /\ A A e. NN0_s ) |