| Step |
Hyp |
Ref |
Expression |
| 1 |
|
risset |
|- ( ( bday ` A ) e. _om <-> E. x e. _om x = ( bday ` A ) ) |
| 2 |
|
eqeq1 |
|- ( y = z -> ( y = ( bday ` a ) <-> z = ( bday ` a ) ) ) |
| 3 |
2
|
imbi1d |
|- ( y = z -> ( ( y = ( bday ` a ) -> a e. NN0_s ) <-> ( z = ( bday ` a ) -> a e. NN0_s ) ) ) |
| 4 |
3
|
ralbidv |
|- ( y = z -> ( A. a e. On_s ( y = ( bday ` a ) -> a e. NN0_s ) <-> A. a e. On_s ( z = ( bday ` a ) -> a e. NN0_s ) ) ) |
| 5 |
|
fveq2 |
|- ( a = b -> ( bday ` a ) = ( bday ` b ) ) |
| 6 |
5
|
eqeq2d |
|- ( a = b -> ( z = ( bday ` a ) <-> z = ( bday ` b ) ) ) |
| 7 |
|
eleq1 |
|- ( a = b -> ( a e. NN0_s <-> b e. NN0_s ) ) |
| 8 |
6 7
|
imbi12d |
|- ( a = b -> ( ( z = ( bday ` a ) -> a e. NN0_s ) <-> ( z = ( bday ` b ) -> b e. NN0_s ) ) ) |
| 9 |
8
|
cbvralvw |
|- ( A. a e. On_s ( z = ( bday ` a ) -> a e. NN0_s ) <-> A. b e. On_s ( z = ( bday ` b ) -> b e. NN0_s ) ) |
| 10 |
4 9
|
bitrdi |
|- ( y = z -> ( A. a e. On_s ( y = ( bday ` a ) -> a e. NN0_s ) <-> A. b e. On_s ( z = ( bday ` b ) -> b e. NN0_s ) ) ) |
| 11 |
|
eqeq1 |
|- ( y = x -> ( y = ( bday ` a ) <-> x = ( bday ` a ) ) ) |
| 12 |
11
|
imbi1d |
|- ( y = x -> ( ( y = ( bday ` a ) -> a e. NN0_s ) <-> ( x = ( bday ` a ) -> a e. NN0_s ) ) ) |
| 13 |
12
|
ralbidv |
|- ( y = x -> ( A. a e. On_s ( y = ( bday ` a ) -> a e. NN0_s ) <-> A. a e. On_s ( x = ( bday ` a ) -> a e. NN0_s ) ) ) |
| 14 |
|
onscutlt |
|- ( a e. On_s -> a = ( { x e. On_s | x |
| 15 |
14
|
3ad2ant3 |
|- ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) -> a = ( { x e. On_s | x |
| 16 |
|
onssno |
|- On_s C_ No |
| 17 |
|
simp13 |
|- ( ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) /\ x e. On_s /\ x a e. On_s ) |
| 18 |
16 17
|
sselid |
|- ( ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) /\ x e. On_s /\ x a e. No ) |
| 19 |
|
sltonold |
|- ( a e. No -> { b e. On_s | b |
| 20 |
18 19
|
syl |
|- ( ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) /\ x e. On_s /\ x { b e. On_s | b |
| 21 |
|
breq1 |
|- ( b = x -> ( b x |
| 22 |
|
simp2 |
|- ( ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) /\ x e. On_s /\ x x e. On_s ) |
| 23 |
|
simp3 |
|- ( ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) /\ x e. On_s /\ x x |
| 24 |
21 22 23
|
elrabd |
|- ( ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) /\ x e. On_s /\ x x e. { b e. On_s | b |
| 25 |
20 24
|
sseldd |
|- ( ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) /\ x e. On_s /\ x x e. ( _Old ` ( bday ` a ) ) ) |
| 26 |
|
bdayelon |
|- ( bday ` a ) e. On |
| 27 |
16 22
|
sselid |
|- ( ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) /\ x e. On_s /\ x x e. No ) |
| 28 |
|
oldbday |
|- ( ( ( bday ` a ) e. On /\ x e. No ) -> ( x e. ( _Old ` ( bday ` a ) ) <-> ( bday ` x ) e. ( bday ` a ) ) ) |
| 29 |
26 27 28
|
sylancr |
|- ( ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) /\ x e. On_s /\ x ( x e. ( _Old ` ( bday ` a ) ) <-> ( bday ` x ) e. ( bday ` a ) ) ) |
| 30 |
25 29
|
mpbid |
|- ( ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) /\ x e. On_s /\ x ( bday ` x ) e. ( bday ` a ) ) |
| 31 |
|
fveq2 |
|- ( b = x -> ( bday ` b ) = ( bday ` x ) ) |
| 32 |
31
|
eleq1d |
|- ( b = x -> ( ( bday ` b ) e. ( bday ` a ) <-> ( bday ` x ) e. ( bday ` a ) ) ) |
| 33 |
|
eleq1 |
|- ( b = x -> ( b e. NN0_s <-> x e. NN0_s ) ) |
| 34 |
32 33
|
imbi12d |
|- ( b = x -> ( ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) <-> ( ( bday ` x ) e. ( bday ` a ) -> x e. NN0_s ) ) ) |
| 35 |
|
simp12 |
|- ( ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) /\ x e. On_s /\ x A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) ) |
| 36 |
34 35 22
|
rspcdva |
|- ( ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) /\ x e. On_s /\ x ( ( bday ` x ) e. ( bday ` a ) -> x e. NN0_s ) ) |
| 37 |
30 36
|
mpd |
|- ( ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) /\ x e. On_s /\ x x e. NN0_s ) |
| 38 |
37
|
rabssdv |
|- ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) -> { x e. On_s | x |
| 39 |
|
oldfi |
|- ( ( bday ` a ) e. _om -> ( _Old ` ( bday ` a ) ) e. Fin ) |
| 40 |
39
|
3ad2ant1 |
|- ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) -> ( _Old ` ( bday ` a ) ) e. Fin ) |
| 41 |
|
onsno |
|- ( a e. On_s -> a e. No ) |
| 42 |
41
|
3ad2ant3 |
|- ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) -> a e. No ) |
| 43 |
|
sltonold |
|- ( a e. No -> { x e. On_s | x |
| 44 |
42 43
|
syl |
|- ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) -> { x e. On_s | x |
| 45 |
40 44
|
ssfid |
|- ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) -> { x e. On_s | x |
| 46 |
|
n0sfincut |
|- ( ( { x e. On_s | x ( { x e. On_s | x |
| 47 |
38 45 46
|
syl2anc |
|- ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) -> ( { x e. On_s | x |
| 48 |
15 47
|
eqeltrd |
|- ( ( ( bday ` a ) e. _om /\ A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) /\ a e. On_s ) -> a e. NN0_s ) |
| 49 |
48
|
3exp |
|- ( ( bday ` a ) e. _om -> ( A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) -> ( a e. On_s -> a e. NN0_s ) ) ) |
| 50 |
|
eleq1 |
|- ( y = ( bday ` a ) -> ( y e. _om <-> ( bday ` a ) e. _om ) ) |
| 51 |
|
raleq |
|- ( y = ( bday ` a ) -> ( A. z e. y A. b e. On_s ( z = ( bday ` b ) -> b e. NN0_s ) <-> A. z e. ( bday ` a ) A. b e. On_s ( z = ( bday ` b ) -> b e. NN0_s ) ) ) |
| 52 |
|
ralcom |
|- ( A. z e. ( bday ` a ) A. b e. On_s ( z = ( bday ` b ) -> b e. NN0_s ) <-> A. b e. On_s A. z e. ( bday ` a ) ( z = ( bday ` b ) -> b e. NN0_s ) ) |
| 53 |
|
df-ral |
|- ( A. z e. ( bday ` a ) ( z = ( bday ` b ) -> b e. NN0_s ) <-> A. z ( z e. ( bday ` a ) -> ( z = ( bday ` b ) -> b e. NN0_s ) ) ) |
| 54 |
|
bi2.04 |
|- ( ( z e. ( bday ` a ) -> ( z = ( bday ` b ) -> b e. NN0_s ) ) <-> ( z = ( bday ` b ) -> ( z e. ( bday ` a ) -> b e. NN0_s ) ) ) |
| 55 |
54
|
albii |
|- ( A. z ( z e. ( bday ` a ) -> ( z = ( bday ` b ) -> b e. NN0_s ) ) <-> A. z ( z = ( bday ` b ) -> ( z e. ( bday ` a ) -> b e. NN0_s ) ) ) |
| 56 |
|
fvex |
|- ( bday ` b ) e. _V |
| 57 |
|
eleq1 |
|- ( z = ( bday ` b ) -> ( z e. ( bday ` a ) <-> ( bday ` b ) e. ( bday ` a ) ) ) |
| 58 |
57
|
imbi1d |
|- ( z = ( bday ` b ) -> ( ( z e. ( bday ` a ) -> b e. NN0_s ) <-> ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) ) ) |
| 59 |
56 58
|
ceqsalv |
|- ( A. z ( z = ( bday ` b ) -> ( z e. ( bday ` a ) -> b e. NN0_s ) ) <-> ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) ) |
| 60 |
53 55 59
|
3bitri |
|- ( A. z e. ( bday ` a ) ( z = ( bday ` b ) -> b e. NN0_s ) <-> ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) ) |
| 61 |
60
|
ralbii |
|- ( A. b e. On_s A. z e. ( bday ` a ) ( z = ( bday ` b ) -> b e. NN0_s ) <-> A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) ) |
| 62 |
52 61
|
bitri |
|- ( A. z e. ( bday ` a ) A. b e. On_s ( z = ( bday ` b ) -> b e. NN0_s ) <-> A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) ) |
| 63 |
51 62
|
bitrdi |
|- ( y = ( bday ` a ) -> ( A. z e. y A. b e. On_s ( z = ( bday ` b ) -> b e. NN0_s ) <-> A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) ) ) |
| 64 |
63
|
imbi1d |
|- ( y = ( bday ` a ) -> ( ( A. z e. y A. b e. On_s ( z = ( bday ` b ) -> b e. NN0_s ) -> ( a e. On_s -> a e. NN0_s ) ) <-> ( A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) -> ( a e. On_s -> a e. NN0_s ) ) ) ) |
| 65 |
50 64
|
imbi12d |
|- ( y = ( bday ` a ) -> ( ( y e. _om -> ( A. z e. y A. b e. On_s ( z = ( bday ` b ) -> b e. NN0_s ) -> ( a e. On_s -> a e. NN0_s ) ) ) <-> ( ( bday ` a ) e. _om -> ( A. b e. On_s ( ( bday ` b ) e. ( bday ` a ) -> b e. NN0_s ) -> ( a e. On_s -> a e. NN0_s ) ) ) ) ) |
| 66 |
49 65
|
mpbiri |
|- ( y = ( bday ` a ) -> ( y e. _om -> ( A. z e. y A. b e. On_s ( z = ( bday ` b ) -> b e. NN0_s ) -> ( a e. On_s -> a e. NN0_s ) ) ) ) |
| 67 |
66
|
com4l |
|- ( y e. _om -> ( A. z e. y A. b e. On_s ( z = ( bday ` b ) -> b e. NN0_s ) -> ( a e. On_s -> ( y = ( bday ` a ) -> a e. NN0_s ) ) ) ) |
| 68 |
67
|
ralrimdv |
|- ( y e. _om -> ( A. z e. y A. b e. On_s ( z = ( bday ` b ) -> b e. NN0_s ) -> A. a e. On_s ( y = ( bday ` a ) -> a e. NN0_s ) ) ) |
| 69 |
10 13 68
|
omsinds |
|- ( x e. _om -> A. a e. On_s ( x = ( bday ` a ) -> a e. NN0_s ) ) |
| 70 |
|
fveq2 |
|- ( a = A -> ( bday ` a ) = ( bday ` A ) ) |
| 71 |
70
|
eqeq2d |
|- ( a = A -> ( x = ( bday ` a ) <-> x = ( bday ` A ) ) ) |
| 72 |
|
eleq1 |
|- ( a = A -> ( a e. NN0_s <-> A e. NN0_s ) ) |
| 73 |
71 72
|
imbi12d |
|- ( a = A -> ( ( x = ( bday ` a ) -> a e. NN0_s ) <-> ( x = ( bday ` A ) -> A e. NN0_s ) ) ) |
| 74 |
73
|
rspccv |
|- ( A. a e. On_s ( x = ( bday ` a ) -> a e. NN0_s ) -> ( A e. On_s -> ( x = ( bday ` A ) -> A e. NN0_s ) ) ) |
| 75 |
69 74
|
syl |
|- ( x e. _om -> ( A e. On_s -> ( x = ( bday ` A ) -> A e. NN0_s ) ) ) |
| 76 |
75
|
com23 |
|- ( x e. _om -> ( x = ( bday ` A ) -> ( A e. On_s -> A e. NN0_s ) ) ) |
| 77 |
76
|
rexlimiv |
|- ( E. x e. _om x = ( bday ` A ) -> ( A e. On_s -> A e. NN0_s ) ) |
| 78 |
1 77
|
sylbi |
|- ( ( bday ` A ) e. _om -> ( A e. On_s -> A e. NN0_s ) ) |
| 79 |
78
|
impcom |
|- ( ( A e. On_s /\ ( bday ` A ) e. _om ) -> A e. NN0_s ) |