Step |
Hyp |
Ref |
Expression |
1 |
|
neicvg.o |
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
2 |
|
neicvg.p |
|- P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) ) |
3 |
|
neicvg.d |
|- D = ( P ` B ) |
4 |
|
neicvg.f |
|- F = ( ~P B O B ) |
5 |
|
neicvg.g |
|- G = ( B O ~P B ) |
6 |
|
neicvg.h |
|- H = ( F o. ( D o. G ) ) |
7 |
|
neicvg.r |
|- ( ph -> N H M ) |
8 |
|
neicvgfv.x |
|- ( ph -> X e. B ) |
9 |
|
dfin5 |
|- ( ~P B i^i ( N ` X ) ) = { s e. ~P B | s e. ( N ` X ) } |
10 |
1 2 3 4 5 6 7
|
neicvgnex |
|- ( ph -> N e. ( ~P ~P B ^m B ) ) |
11 |
|
elmapi |
|- ( N e. ( ~P ~P B ^m B ) -> N : B --> ~P ~P B ) |
12 |
10 11
|
syl |
|- ( ph -> N : B --> ~P ~P B ) |
13 |
12 8
|
ffvelrnd |
|- ( ph -> ( N ` X ) e. ~P ~P B ) |
14 |
13
|
elpwid |
|- ( ph -> ( N ` X ) C_ ~P B ) |
15 |
|
sseqin2 |
|- ( ( N ` X ) C_ ~P B <-> ( ~P B i^i ( N ` X ) ) = ( N ` X ) ) |
16 |
14 15
|
sylib |
|- ( ph -> ( ~P B i^i ( N ` X ) ) = ( N ` X ) ) |
17 |
7
|
adantr |
|- ( ( ph /\ s e. ~P B ) -> N H M ) |
18 |
8
|
adantr |
|- ( ( ph /\ s e. ~P B ) -> X e. B ) |
19 |
|
simpr |
|- ( ( ph /\ s e. ~P B ) -> s e. ~P B ) |
20 |
1 2 3 4 5 6 17 18 19
|
neicvgel1 |
|- ( ( ph /\ s e. ~P B ) -> ( s e. ( N ` X ) <-> -. ( B \ s ) e. ( M ` X ) ) ) |
21 |
20
|
rabbidva |
|- ( ph -> { s e. ~P B | s e. ( N ` X ) } = { s e. ~P B | -. ( B \ s ) e. ( M ` X ) } ) |
22 |
9 16 21
|
3eqtr3a |
|- ( ph -> ( N ` X ) = { s e. ~P B | -. ( B \ s ) e. ( M ` X ) } ) |