| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neicvg.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
| 2 |
|
neicvg.p |
⊢ 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛 ↑m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛 ∖ 𝑜 ) ) ) ) ) ) |
| 3 |
|
neicvg.d |
⊢ 𝐷 = ( 𝑃 ‘ 𝐵 ) |
| 4 |
|
neicvg.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
| 5 |
|
neicvg.g |
⊢ 𝐺 = ( 𝐵 𝑂 𝒫 𝐵 ) |
| 6 |
|
neicvg.h |
⊢ 𝐻 = ( 𝐹 ∘ ( 𝐷 ∘ 𝐺 ) ) |
| 7 |
|
neicvg.r |
⊢ ( 𝜑 → 𝑁 𝐻 𝑀 ) |
| 8 |
|
neicvgfv.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 9 |
|
dfin5 |
⊢ ( 𝒫 𝐵 ∩ ( 𝑁 ‘ 𝑋 ) ) = { 𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) } |
| 10 |
1 2 3 4 5 6 7
|
neicvgnex |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) ) |
| 11 |
|
elmapi |
⊢ ( 𝑁 ∈ ( 𝒫 𝒫 𝐵 ↑m 𝐵 ) → 𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 ) |
| 13 |
12 8
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ∈ 𝒫 𝒫 𝐵 ) |
| 14 |
13
|
elpwid |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 ) |
| 15 |
|
sseqin2 |
⊢ ( ( 𝑁 ‘ 𝑋 ) ⊆ 𝒫 𝐵 ↔ ( 𝒫 𝐵 ∩ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 16 |
14 15
|
sylib |
⊢ ( 𝜑 → ( 𝒫 𝐵 ∩ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑁 𝐻 𝑀 ) |
| 18 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 20 |
1 2 3 4 5 6 17 18 19
|
neicvgel1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) ↔ ¬ ( 𝐵 ∖ 𝑠 ) ∈ ( 𝑀 ‘ 𝑋 ) ) ) |
| 21 |
20
|
rabbidva |
⊢ ( 𝜑 → { 𝑠 ∈ 𝒫 𝐵 ∣ 𝑠 ∈ ( 𝑁 ‘ 𝑋 ) } = { 𝑠 ∈ 𝒫 𝐵 ∣ ¬ ( 𝐵 ∖ 𝑠 ) ∈ ( 𝑀 ‘ 𝑋 ) } ) |
| 22 |
9 16 21
|
3eqtr3a |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ¬ ( 𝐵 ∖ 𝑠 ) ∈ ( 𝑀 ‘ 𝑋 ) } ) |