Metamath Proof Explorer


Theorem neicvgfv

Description: The value of the neighborhoods (convergents) in terms of the the convergents (neighborhoods) function. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses neicvg.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
neicvg.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
neicvg.d 𝐷 = ( 𝑃𝐵 )
neicvg.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
neicvg.g 𝐺 = ( 𝐵 𝑂 𝒫 𝐵 )
neicvg.h 𝐻 = ( 𝐹 ∘ ( 𝐷𝐺 ) )
neicvg.r ( 𝜑𝑁 𝐻 𝑀 )
neicvgfv.x ( 𝜑𝑋𝐵 )
Assertion neicvgfv ( 𝜑 → ( 𝑁𝑋 ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ¬ ( 𝐵𝑠 ) ∈ ( 𝑀𝑋 ) } )

Proof

Step Hyp Ref Expression
1 neicvg.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 neicvg.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
3 neicvg.d 𝐷 = ( 𝑃𝐵 )
4 neicvg.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
5 neicvg.g 𝐺 = ( 𝐵 𝑂 𝒫 𝐵 )
6 neicvg.h 𝐻 = ( 𝐹 ∘ ( 𝐷𝐺 ) )
7 neicvg.r ( 𝜑𝑁 𝐻 𝑀 )
8 neicvgfv.x ( 𝜑𝑋𝐵 )
9 dfin5 ( 𝒫 𝐵 ∩ ( 𝑁𝑋 ) ) = { 𝑠 ∈ 𝒫 𝐵𝑠 ∈ ( 𝑁𝑋 ) }
10 1 2 3 4 5 6 7 neicvgnex ( 𝜑𝑁 ∈ ( 𝒫 𝒫 𝐵m 𝐵 ) )
11 elmapi ( 𝑁 ∈ ( 𝒫 𝒫 𝐵m 𝐵 ) → 𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 )
12 10 11 syl ( 𝜑𝑁 : 𝐵 ⟶ 𝒫 𝒫 𝐵 )
13 12 8 ffvelrnd ( 𝜑 → ( 𝑁𝑋 ) ∈ 𝒫 𝒫 𝐵 )
14 13 elpwid ( 𝜑 → ( 𝑁𝑋 ) ⊆ 𝒫 𝐵 )
15 sseqin2 ( ( 𝑁𝑋 ) ⊆ 𝒫 𝐵 ↔ ( 𝒫 𝐵 ∩ ( 𝑁𝑋 ) ) = ( 𝑁𝑋 ) )
16 14 15 sylib ( 𝜑 → ( 𝒫 𝐵 ∩ ( 𝑁𝑋 ) ) = ( 𝑁𝑋 ) )
17 7 adantr ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → 𝑁 𝐻 𝑀 )
18 8 adantr ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → 𝑋𝐵 )
19 simpr ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 )
20 1 2 3 4 5 6 17 18 19 neicvgel1 ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → ( 𝑠 ∈ ( 𝑁𝑋 ) ↔ ¬ ( 𝐵𝑠 ) ∈ ( 𝑀𝑋 ) ) )
21 20 rabbidva ( 𝜑 → { 𝑠 ∈ 𝒫 𝐵𝑠 ∈ ( 𝑁𝑋 ) } = { 𝑠 ∈ 𝒫 𝐵 ∣ ¬ ( 𝐵𝑠 ) ∈ ( 𝑀𝑋 ) } )
22 9 16 21 3eqtr3a ( 𝜑 → ( 𝑁𝑋 ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ¬ ( 𝐵𝑠 ) ∈ ( 𝑀𝑋 ) } )