Metamath Proof Explorer


Theorem neicvgfv

Description: The value of the neighborhoods (convergents) in terms of the the convergents (neighborhoods) function. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses neicvg.o O = i V , j V k 𝒫 j i l j m i | l k m
neicvg.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
neicvg.d D = P B
neicvg.f F = 𝒫 B O B
neicvg.g G = B O 𝒫 B
neicvg.h H = F D G
neicvg.r φ N H M
neicvgfv.x φ X B
Assertion neicvgfv φ N X = s 𝒫 B | ¬ B s M X

Proof

Step Hyp Ref Expression
1 neicvg.o O = i V , j V k 𝒫 j i l j m i | l k m
2 neicvg.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
3 neicvg.d D = P B
4 neicvg.f F = 𝒫 B O B
5 neicvg.g G = B O 𝒫 B
6 neicvg.h H = F D G
7 neicvg.r φ N H M
8 neicvgfv.x φ X B
9 dfin5 𝒫 B N X = s 𝒫 B | s N X
10 1 2 3 4 5 6 7 neicvgnex φ N 𝒫 𝒫 B B
11 elmapi N 𝒫 𝒫 B B N : B 𝒫 𝒫 B
12 10 11 syl φ N : B 𝒫 𝒫 B
13 12 8 ffvelrnd φ N X 𝒫 𝒫 B
14 13 elpwid φ N X 𝒫 B
15 sseqin2 N X 𝒫 B 𝒫 B N X = N X
16 14 15 sylib φ 𝒫 B N X = N X
17 7 adantr φ s 𝒫 B N H M
18 8 adantr φ s 𝒫 B X B
19 simpr φ s 𝒫 B s 𝒫 B
20 1 2 3 4 5 6 17 18 19 neicvgel1 φ s 𝒫 B s N X ¬ B s M X
21 20 rabbidva φ s 𝒫 B | s N X = s 𝒫 B | ¬ B s M X
22 9 16 21 3eqtr3a φ N X = s 𝒫 B | ¬ B s M X