Metamath Proof Explorer


Theorem neicvgel1

Description: A subset being an element of a neighborhood of a point is equivalent to the complement of that subset not being a element of the convergent of that point. (Contributed by RP, 12-Jun-2021)

Ref Expression
Hypotheses neicvg.o O = i V , j V k 𝒫 j i l j m i | l k m
neicvg.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
neicvg.d D = P B
neicvg.f F = 𝒫 B O B
neicvg.g G = B O 𝒫 B
neicvg.h H = F D G
neicvg.r φ N H M
neicvgel.x φ X B
neicvgel.s φ S 𝒫 B
Assertion neicvgel1 φ S N X ¬ B S M X

Proof

Step Hyp Ref Expression
1 neicvg.o O = i V , j V k 𝒫 j i l j m i | l k m
2 neicvg.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
3 neicvg.d D = P B
4 neicvg.f F = 𝒫 B O B
5 neicvg.g G = B O 𝒫 B
6 neicvg.h H = F D G
7 neicvg.r φ N H M
8 neicvgel.x φ X B
9 neicvgel.s φ S 𝒫 B
10 3 6 7 neicvgbex φ B V
11 simpr φ B V B V
12 11 pwexd φ B V 𝒫 B V
13 1 12 11 4 fsovf1od φ B V F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B
14 f1ofn F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B F Fn 𝒫 B 𝒫 B
15 13 14 syl φ B V F Fn 𝒫 B 𝒫 B
16 2 3 11 dssmapf1od φ B V D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B
17 f1of D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B D : 𝒫 B 𝒫 B 𝒫 B 𝒫 B
18 16 17 syl φ B V D : 𝒫 B 𝒫 B 𝒫 B 𝒫 B
19 1 11 12 5 fsovfd φ B V G : 𝒫 𝒫 B B 𝒫 B 𝒫 B
20 6 breqi N H M N F D G M
21 7 20 sylib φ N F D G M
22 21 adantr φ B V N F D G M
23 15 18 19 22 brcofffn φ B V N G G N G N D D G N D G N F M
24 10 23 mpdan φ N G G N G N D D G N D G N F M
25 simpr2 φ N G G N G N D D G N D G N F M G N D D G N
26 8 adantr φ N G G N G N D D G N D G N F M X B
27 9 adantr φ N G G N G N D D G N D G N F M S 𝒫 B
28 2 3 25 26 27 ntrclselnel1 φ N G G N G N D D G N D G N F M X G N S ¬ X D G N B S
29 eqid 𝒫 B O B = 𝒫 B O B
30 simpr1 φ N G G N G N D D G N D G N F M N G G N
31 5 breqi N G G N N B O 𝒫 B G N
32 31 a1i φ N G G N G N D D G N D G N F M N G G N N B O 𝒫 B G N
33 10 adantr φ N G G N G N D D G N D G N F M B V
34 id B V B V
35 pwexg B V 𝒫 B V
36 eqid B O 𝒫 B = B O 𝒫 B
37 1 34 35 36 fsovf1od B V B O 𝒫 B : 𝒫 𝒫 B B 1-1 onto 𝒫 B 𝒫 B
38 33 37 syl φ N G G N G N D D G N D G N F M B O 𝒫 B : 𝒫 𝒫 B B 1-1 onto 𝒫 B 𝒫 B
39 f1orel B O 𝒫 B : 𝒫 𝒫 B B 1-1 onto 𝒫 B 𝒫 B Rel B O 𝒫 B
40 relbrcnvg Rel B O 𝒫 B G N B O 𝒫 B -1 N N B O 𝒫 B G N
41 38 39 40 3syl φ N G G N G N D D G N D G N F M G N B O 𝒫 B -1 N N B O 𝒫 B G N
42 1 34 35 36 29 fsovcnvd B V B O 𝒫 B -1 = 𝒫 B O B
43 42 breqd B V G N B O 𝒫 B -1 N G N 𝒫 B O B N
44 33 43 syl φ N G G N G N D D G N D G N F M G N B O 𝒫 B -1 N G N 𝒫 B O B N
45 32 41 44 3bitr2d φ N G G N G N D D G N D G N F M N G G N G N 𝒫 B O B N
46 30 45 mpbid φ N G G N G N D D G N D G N F M G N 𝒫 B O B N
47 1 29 46 26 27 ntrneiel φ N G G N G N D D G N D G N F M X G N S S N X
48 simpr3 φ N G G N G N D D G N D G N F M D G N F M
49 difssd φ B S B
50 10 49 sselpwd φ B S 𝒫 B
51 50 adantr φ N G G N G N D D G N D G N F M B S 𝒫 B
52 1 4 48 26 51 ntrneiel φ N G G N G N D D G N D G N F M X D G N B S B S M X
53 52 notbid φ N G G N G N D D G N D G N F M ¬ X D G N B S ¬ B S M X
54 28 47 53 3bitr3d φ N G G N G N D D G N D G N F M S N X ¬ B S M X
55 24 54 mpdan φ S N X ¬ B S M X