Metamath Proof Explorer


Theorem neicvgel1

Description: A subset being an element of a neighborhood of a point is equivalent to the complement of that subset not being a element of the convergent of that point. (Contributed by RP, 12-Jun-2021)

Ref Expression
Hypotheses neicvg.o O=iV,jVk𝒫jiljmi|lkm
neicvg.p P=nVp𝒫n𝒫no𝒫nnpno
neicvg.d D=PB
neicvg.f F=𝒫BOB
neicvg.g G=BO𝒫B
neicvg.h H=FDG
neicvg.r φNHM
neicvgel.x φXB
neicvgel.s φS𝒫B
Assertion neicvgel1 φSNX¬BSMX

Proof

Step Hyp Ref Expression
1 neicvg.o O=iV,jVk𝒫jiljmi|lkm
2 neicvg.p P=nVp𝒫n𝒫no𝒫nnpno
3 neicvg.d D=PB
4 neicvg.f F=𝒫BOB
5 neicvg.g G=BO𝒫B
6 neicvg.h H=FDG
7 neicvg.r φNHM
8 neicvgel.x φXB
9 neicvgel.s φS𝒫B
10 3 6 7 neicvgbex φBV
11 simpr φBVBV
12 11 pwexd φBV𝒫BV
13 1 12 11 4 fsovf1od φBVF:𝒫B𝒫B1-1 onto𝒫𝒫BB
14 f1ofn F:𝒫B𝒫B1-1 onto𝒫𝒫BBFFn𝒫B𝒫B
15 13 14 syl φBVFFn𝒫B𝒫B
16 2 3 11 dssmapf1od φBVD:𝒫B𝒫B1-1 onto𝒫B𝒫B
17 f1of D:𝒫B𝒫B1-1 onto𝒫B𝒫BD:𝒫B𝒫B𝒫B𝒫B
18 16 17 syl φBVD:𝒫B𝒫B𝒫B𝒫B
19 1 11 12 5 fsovfd φBVG:𝒫𝒫BB𝒫B𝒫B
20 6 breqi NHMNFDGM
21 7 20 sylib φNFDGM
22 21 adantr φBVNFDGM
23 15 18 19 22 brcofffn φBVNGGNGNDDGNDGNFM
24 10 23 mpdan φNGGNGNDDGNDGNFM
25 simpr2 φNGGNGNDDGNDGNFMGNDDGN
26 8 adantr φNGGNGNDDGNDGNFMXB
27 9 adantr φNGGNGNDDGNDGNFMS𝒫B
28 2 3 25 26 27 ntrclselnel1 φNGGNGNDDGNDGNFMXGNS¬XDGNBS
29 eqid 𝒫BOB=𝒫BOB
30 simpr1 φNGGNGNDDGNDGNFMNGGN
31 5 breqi NGGNNBO𝒫BGN
32 31 a1i φNGGNGNDDGNDGNFMNGGNNBO𝒫BGN
33 10 adantr φNGGNGNDDGNDGNFMBV
34 id BVBV
35 pwexg BV𝒫BV
36 eqid BO𝒫B=BO𝒫B
37 1 34 35 36 fsovf1od BVBO𝒫B:𝒫𝒫BB1-1 onto𝒫B𝒫B
38 33 37 syl φNGGNGNDDGNDGNFMBO𝒫B:𝒫𝒫BB1-1 onto𝒫B𝒫B
39 f1orel BO𝒫B:𝒫𝒫BB1-1 onto𝒫B𝒫BRelBO𝒫B
40 relbrcnvg RelBO𝒫BGNBO𝒫B-1NNBO𝒫BGN
41 38 39 40 3syl φNGGNGNDDGNDGNFMGNBO𝒫B-1NNBO𝒫BGN
42 1 34 35 36 29 fsovcnvd BVBO𝒫B-1=𝒫BOB
43 42 breqd BVGNBO𝒫B-1NGN𝒫BOBN
44 33 43 syl φNGGNGNDDGNDGNFMGNBO𝒫B-1NGN𝒫BOBN
45 32 41 44 3bitr2d φNGGNGNDDGNDGNFMNGGNGN𝒫BOBN
46 30 45 mpbid φNGGNGNDDGNDGNFMGN𝒫BOBN
47 1 29 46 26 27 ntrneiel φNGGNGNDDGNDGNFMXGNSSNX
48 simpr3 φNGGNGNDDGNDGNFMDGNFM
49 difssd φBSB
50 10 49 sselpwd φBS𝒫B
51 50 adantr φNGGNGNDDGNDGNFMBS𝒫B
52 1 4 48 26 51 ntrneiel φNGGNGNDDGNDGNFMXDGNBSBSMX
53 52 notbid φNGGNGNDDGNDGNFM¬XDGNBS¬BSMX
54 28 47 53 3bitr3d φNGGNGNDDGNDGNFMSNX¬BSMX
55 24 54 mpdan φSNX¬BSMX