Description: A subset being an element of a neighborhood of a point is equivalent to the complement of that subset not being a element of the convergent of that point. (Contributed by RP, 12-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | neicvg.o | |
|
neicvg.p | |
||
neicvg.d | |
||
neicvg.f | |
||
neicvg.g | |
||
neicvg.h | |
||
neicvg.r | |
||
neicvgel.x | |
||
neicvgel.s | |
||
Assertion | neicvgel1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvg.o | |
|
2 | neicvg.p | |
|
3 | neicvg.d | |
|
4 | neicvg.f | |
|
5 | neicvg.g | |
|
6 | neicvg.h | |
|
7 | neicvg.r | |
|
8 | neicvgel.x | |
|
9 | neicvgel.s | |
|
10 | 3 6 7 | neicvgbex | |
11 | simpr | |
|
12 | 11 | pwexd | |
13 | 1 12 11 4 | fsovf1od | |
14 | f1ofn | |
|
15 | 13 14 | syl | |
16 | 2 3 11 | dssmapf1od | |
17 | f1of | |
|
18 | 16 17 | syl | |
19 | 1 11 12 5 | fsovfd | |
20 | 6 | breqi | |
21 | 7 20 | sylib | |
22 | 21 | adantr | |
23 | 15 18 19 22 | brcofffn | |
24 | 10 23 | mpdan | |
25 | simpr2 | |
|
26 | 8 | adantr | |
27 | 9 | adantr | |
28 | 2 3 25 26 27 | ntrclselnel1 | |
29 | eqid | |
|
30 | simpr1 | |
|
31 | 5 | breqi | |
32 | 31 | a1i | |
33 | 10 | adantr | |
34 | id | |
|
35 | pwexg | |
|
36 | eqid | |
|
37 | 1 34 35 36 | fsovf1od | |
38 | 33 37 | syl | |
39 | f1orel | |
|
40 | relbrcnvg | |
|
41 | 38 39 40 | 3syl | |
42 | 1 34 35 36 29 | fsovcnvd | |
43 | 42 | breqd | |
44 | 33 43 | syl | |
45 | 32 41 44 | 3bitr2d | |
46 | 30 45 | mpbid | |
47 | 1 29 46 26 27 | ntrneiel | |
48 | simpr3 | |
|
49 | difssd | |
|
50 | 10 49 | sselpwd | |
51 | 50 | adantr | |
52 | 1 4 48 26 51 | ntrneiel | |
53 | 52 | notbid | |
54 | 28 47 53 | 3bitr3d | |
55 | 24 54 | mpdan | |