Step |
Hyp |
Ref |
Expression |
1 |
|
neicvg.o |
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
2 |
|
neicvg.p |
|- P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) ) |
3 |
|
neicvg.d |
|- D = ( P ` B ) |
4 |
|
neicvg.f |
|- F = ( ~P B O B ) |
5 |
|
neicvg.g |
|- G = ( B O ~P B ) |
6 |
|
neicvg.h |
|- H = ( F o. ( D o. G ) ) |
7 |
|
neicvg.r |
|- ( ph -> N H M ) |
8 |
|
neicvgel.x |
|- ( ph -> X e. B ) |
9 |
|
neicvgel.s |
|- ( ph -> S e. ~P B ) |
10 |
3 6 7
|
neicvgbex |
|- ( ph -> B e. _V ) |
11 |
|
simpr |
|- ( ( ph /\ B e. _V ) -> B e. _V ) |
12 |
11
|
pwexd |
|- ( ( ph /\ B e. _V ) -> ~P B e. _V ) |
13 |
1 12 11 4
|
fsovf1od |
|- ( ( ph /\ B e. _V ) -> F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) ) |
14 |
|
f1ofn |
|- ( F : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P ~P B ^m B ) -> F Fn ( ~P B ^m ~P B ) ) |
15 |
13 14
|
syl |
|- ( ( ph /\ B e. _V ) -> F Fn ( ~P B ^m ~P B ) ) |
16 |
2 3 11
|
dssmapf1od |
|- ( ( ph /\ B e. _V ) -> D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) ) |
17 |
|
f1of |
|- ( D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) -> D : ( ~P B ^m ~P B ) --> ( ~P B ^m ~P B ) ) |
18 |
16 17
|
syl |
|- ( ( ph /\ B e. _V ) -> D : ( ~P B ^m ~P B ) --> ( ~P B ^m ~P B ) ) |
19 |
1 11 12 5
|
fsovfd |
|- ( ( ph /\ B e. _V ) -> G : ( ~P ~P B ^m B ) --> ( ~P B ^m ~P B ) ) |
20 |
6
|
breqi |
|- ( N H M <-> N ( F o. ( D o. G ) ) M ) |
21 |
7 20
|
sylib |
|- ( ph -> N ( F o. ( D o. G ) ) M ) |
22 |
21
|
adantr |
|- ( ( ph /\ B e. _V ) -> N ( F o. ( D o. G ) ) M ) |
23 |
15 18 19 22
|
brcofffn |
|- ( ( ph /\ B e. _V ) -> ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) |
24 |
10 23
|
mpdan |
|- ( ph -> ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) |
25 |
|
simpr2 |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> ( G ` N ) D ( D ` ( G ` N ) ) ) |
26 |
8
|
adantr |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> X e. B ) |
27 |
9
|
adantr |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> S e. ~P B ) |
28 |
2 3 25 26 27
|
ntrclselnel1 |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> ( X e. ( ( G ` N ) ` S ) <-> -. X e. ( ( D ` ( G ` N ) ) ` ( B \ S ) ) ) ) |
29 |
|
eqid |
|- ( ~P B O B ) = ( ~P B O B ) |
30 |
|
simpr1 |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> N G ( G ` N ) ) |
31 |
5
|
breqi |
|- ( N G ( G ` N ) <-> N ( B O ~P B ) ( G ` N ) ) |
32 |
31
|
a1i |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> ( N G ( G ` N ) <-> N ( B O ~P B ) ( G ` N ) ) ) |
33 |
10
|
adantr |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> B e. _V ) |
34 |
|
id |
|- ( B e. _V -> B e. _V ) |
35 |
|
pwexg |
|- ( B e. _V -> ~P B e. _V ) |
36 |
|
eqid |
|- ( B O ~P B ) = ( B O ~P B ) |
37 |
1 34 35 36
|
fsovf1od |
|- ( B e. _V -> ( B O ~P B ) : ( ~P ~P B ^m B ) -1-1-onto-> ( ~P B ^m ~P B ) ) |
38 |
33 37
|
syl |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> ( B O ~P B ) : ( ~P ~P B ^m B ) -1-1-onto-> ( ~P B ^m ~P B ) ) |
39 |
|
f1orel |
|- ( ( B O ~P B ) : ( ~P ~P B ^m B ) -1-1-onto-> ( ~P B ^m ~P B ) -> Rel ( B O ~P B ) ) |
40 |
|
relbrcnvg |
|- ( Rel ( B O ~P B ) -> ( ( G ` N ) `' ( B O ~P B ) N <-> N ( B O ~P B ) ( G ` N ) ) ) |
41 |
38 39 40
|
3syl |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> ( ( G ` N ) `' ( B O ~P B ) N <-> N ( B O ~P B ) ( G ` N ) ) ) |
42 |
1 34 35 36 29
|
fsovcnvd |
|- ( B e. _V -> `' ( B O ~P B ) = ( ~P B O B ) ) |
43 |
42
|
breqd |
|- ( B e. _V -> ( ( G ` N ) `' ( B O ~P B ) N <-> ( G ` N ) ( ~P B O B ) N ) ) |
44 |
33 43
|
syl |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> ( ( G ` N ) `' ( B O ~P B ) N <-> ( G ` N ) ( ~P B O B ) N ) ) |
45 |
32 41 44
|
3bitr2d |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> ( N G ( G ` N ) <-> ( G ` N ) ( ~P B O B ) N ) ) |
46 |
30 45
|
mpbid |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> ( G ` N ) ( ~P B O B ) N ) |
47 |
1 29 46 26 27
|
ntrneiel |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> ( X e. ( ( G ` N ) ` S ) <-> S e. ( N ` X ) ) ) |
48 |
|
simpr3 |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> ( D ` ( G ` N ) ) F M ) |
49 |
|
difssd |
|- ( ph -> ( B \ S ) C_ B ) |
50 |
10 49
|
sselpwd |
|- ( ph -> ( B \ S ) e. ~P B ) |
51 |
50
|
adantr |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> ( B \ S ) e. ~P B ) |
52 |
1 4 48 26 51
|
ntrneiel |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> ( X e. ( ( D ` ( G ` N ) ) ` ( B \ S ) ) <-> ( B \ S ) e. ( M ` X ) ) ) |
53 |
52
|
notbid |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> ( -. X e. ( ( D ` ( G ` N ) ) ` ( B \ S ) ) <-> -. ( B \ S ) e. ( M ` X ) ) ) |
54 |
28 47 53
|
3bitr3d |
|- ( ( ph /\ ( N G ( G ` N ) /\ ( G ` N ) D ( D ` ( G ` N ) ) /\ ( D ` ( G ` N ) ) F M ) ) -> ( S e. ( N ` X ) <-> -. ( B \ S ) e. ( M ` X ) ) ) |
55 |
24 54
|
mpdan |
|- ( ph -> ( S e. ( N ` X ) <-> -. ( B \ S ) e. ( M ` X ) ) ) |