Metamath Proof Explorer


Theorem neicvgel2

Description: The complement of a subset being an element of a neighborhood at a point is equivalent to that subset not being a element of the convergent at that point. (Contributed by RP, 12-Jun-2021)

Ref Expression
Hypotheses neicvg.o
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
neicvg.p
|- P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) )
neicvg.d
|- D = ( P ` B )
neicvg.f
|- F = ( ~P B O B )
neicvg.g
|- G = ( B O ~P B )
neicvg.h
|- H = ( F o. ( D o. G ) )
neicvg.r
|- ( ph -> N H M )
neicvgel.x
|- ( ph -> X e. B )
neicvgel.s
|- ( ph -> S e. ~P B )
Assertion neicvgel2
|- ( ph -> ( ( B \ S ) e. ( N ` X ) <-> -. S e. ( M ` X ) ) )

Proof

Step Hyp Ref Expression
1 neicvg.o
 |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) )
2 neicvg.p
 |-  P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) )
3 neicvg.d
 |-  D = ( P ` B )
4 neicvg.f
 |-  F = ( ~P B O B )
5 neicvg.g
 |-  G = ( B O ~P B )
6 neicvg.h
 |-  H = ( F o. ( D o. G ) )
7 neicvg.r
 |-  ( ph -> N H M )
8 neicvgel.x
 |-  ( ph -> X e. B )
9 neicvgel.s
 |-  ( ph -> S e. ~P B )
10 3 6 7 neicvgrcomplex
 |-  ( ph -> ( B \ S ) e. ~P B )
11 1 2 3 4 5 6 7 8 10 neicvgel1
 |-  ( ph -> ( ( B \ S ) e. ( N ` X ) <-> -. ( B \ ( B \ S ) ) e. ( M ` X ) ) )
12 9 elpwid
 |-  ( ph -> S C_ B )
13 dfss4
 |-  ( S C_ B <-> ( B \ ( B \ S ) ) = S )
14 12 13 sylib
 |-  ( ph -> ( B \ ( B \ S ) ) = S )
15 14 eleq1d
 |-  ( ph -> ( ( B \ ( B \ S ) ) e. ( M ` X ) <-> S e. ( M ` X ) ) )
16 15 notbid
 |-  ( ph -> ( -. ( B \ ( B \ S ) ) e. ( M ` X ) <-> -. S e. ( M ` X ) ) )
17 11 16 bitrd
 |-  ( ph -> ( ( B \ S ) e. ( N ` X ) <-> -. S e. ( M ` X ) ) )