Step |
Hyp |
Ref |
Expression |
1 |
|
neicvg.o |
|- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) |
2 |
|
neicvg.p |
|- P = ( n e. _V |-> ( p e. ( ~P n ^m ~P n ) |-> ( o e. ~P n |-> ( n \ ( p ` ( n \ o ) ) ) ) ) ) |
3 |
|
neicvg.d |
|- D = ( P ` B ) |
4 |
|
neicvg.f |
|- F = ( ~P B O B ) |
5 |
|
neicvg.g |
|- G = ( B O ~P B ) |
6 |
|
neicvg.h |
|- H = ( F o. ( D o. G ) ) |
7 |
|
neicvg.r |
|- ( ph -> N H M ) |
8 |
|
neicvgel.x |
|- ( ph -> X e. B ) |
9 |
|
neicvgel.s |
|- ( ph -> S e. ~P B ) |
10 |
3 6 7
|
neicvgrcomplex |
|- ( ph -> ( B \ S ) e. ~P B ) |
11 |
1 2 3 4 5 6 7 8 10
|
neicvgel1 |
|- ( ph -> ( ( B \ S ) e. ( N ` X ) <-> -. ( B \ ( B \ S ) ) e. ( M ` X ) ) ) |
12 |
9
|
elpwid |
|- ( ph -> S C_ B ) |
13 |
|
dfss4 |
|- ( S C_ B <-> ( B \ ( B \ S ) ) = S ) |
14 |
12 13
|
sylib |
|- ( ph -> ( B \ ( B \ S ) ) = S ) |
15 |
14
|
eleq1d |
|- ( ph -> ( ( B \ ( B \ S ) ) e. ( M ` X ) <-> S e. ( M ` X ) ) ) |
16 |
15
|
notbid |
|- ( ph -> ( -. ( B \ ( B \ S ) ) e. ( M ` X ) <-> -. S e. ( M ` X ) ) ) |
17 |
11 16
|
bitrd |
|- ( ph -> ( ( B \ S ) e. ( N ` X ) <-> -. S e. ( M ` X ) ) ) |