Step |
Hyp |
Ref |
Expression |
1 |
|
neicvg.o |
⊢ 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗 ↑m 𝑖 ) ↦ ( 𝑙 ∈ 𝑗 ↦ { 𝑚 ∈ 𝑖 ∣ 𝑙 ∈ ( 𝑘 ‘ 𝑚 ) } ) ) ) |
2 |
|
neicvg.p |
⊢ 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛 ↑m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛 ∖ 𝑜 ) ) ) ) ) ) |
3 |
|
neicvg.d |
⊢ 𝐷 = ( 𝑃 ‘ 𝐵 ) |
4 |
|
neicvg.f |
⊢ 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 ) |
5 |
|
neicvg.g |
⊢ 𝐺 = ( 𝐵 𝑂 𝒫 𝐵 ) |
6 |
|
neicvg.h |
⊢ 𝐻 = ( 𝐹 ∘ ( 𝐷 ∘ 𝐺 ) ) |
7 |
|
neicvg.r |
⊢ ( 𝜑 → 𝑁 𝐻 𝑀 ) |
8 |
|
neicvgel.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
9 |
|
neicvgel.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝒫 𝐵 ) |
10 |
3 6 7
|
neicvgrcomplex |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑆 ) ∈ 𝒫 𝐵 ) |
11 |
1 2 3 4 5 6 7 8 10
|
neicvgel1 |
⊢ ( 𝜑 → ( ( 𝐵 ∖ 𝑆 ) ∈ ( 𝑁 ‘ 𝑋 ) ↔ ¬ ( 𝐵 ∖ ( 𝐵 ∖ 𝑆 ) ) ∈ ( 𝑀 ‘ 𝑋 ) ) ) |
12 |
9
|
elpwid |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
13 |
|
dfss4 |
⊢ ( 𝑆 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑆 ) ) = 𝑆 ) |
14 |
12 13
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑆 ) ) = 𝑆 ) |
15 |
14
|
eleq1d |
⊢ ( 𝜑 → ( ( 𝐵 ∖ ( 𝐵 ∖ 𝑆 ) ) ∈ ( 𝑀 ‘ 𝑋 ) ↔ 𝑆 ∈ ( 𝑀 ‘ 𝑋 ) ) ) |
16 |
15
|
notbid |
⊢ ( 𝜑 → ( ¬ ( 𝐵 ∖ ( 𝐵 ∖ 𝑆 ) ) ∈ ( 𝑀 ‘ 𝑋 ) ↔ ¬ 𝑆 ∈ ( 𝑀 ‘ 𝑋 ) ) ) |
17 |
11 16
|
bitrd |
⊢ ( 𝜑 → ( ( 𝐵 ∖ 𝑆 ) ∈ ( 𝑁 ‘ 𝑋 ) ↔ ¬ 𝑆 ∈ ( 𝑀 ‘ 𝑋 ) ) ) |