Metamath Proof Explorer


Theorem neicvgel2

Description: The complement of a subset being an element of a neighborhood at a point is equivalent to that subset not being a element of the convergent at that point. (Contributed by RP, 12-Jun-2021)

Ref Expression
Hypotheses neicvg.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
neicvg.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
neicvg.d 𝐷 = ( 𝑃𝐵 )
neicvg.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
neicvg.g 𝐺 = ( 𝐵 𝑂 𝒫 𝐵 )
neicvg.h 𝐻 = ( 𝐹 ∘ ( 𝐷𝐺 ) )
neicvg.r ( 𝜑𝑁 𝐻 𝑀 )
neicvgel.x ( 𝜑𝑋𝐵 )
neicvgel.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
Assertion neicvgel2 ( 𝜑 → ( ( 𝐵𝑆 ) ∈ ( 𝑁𝑋 ) ↔ ¬ 𝑆 ∈ ( 𝑀𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 neicvg.o 𝑂 = ( 𝑖 ∈ V , 𝑗 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑗m 𝑖 ) ↦ ( 𝑙𝑗 ↦ { 𝑚𝑖𝑙 ∈ ( 𝑘𝑚 ) } ) ) )
2 neicvg.p 𝑃 = ( 𝑛 ∈ V ↦ ( 𝑝 ∈ ( 𝒫 𝑛m 𝒫 𝑛 ) ↦ ( 𝑜 ∈ 𝒫 𝑛 ↦ ( 𝑛 ∖ ( 𝑝 ‘ ( 𝑛𝑜 ) ) ) ) ) )
3 neicvg.d 𝐷 = ( 𝑃𝐵 )
4 neicvg.f 𝐹 = ( 𝒫 𝐵 𝑂 𝐵 )
5 neicvg.g 𝐺 = ( 𝐵 𝑂 𝒫 𝐵 )
6 neicvg.h 𝐻 = ( 𝐹 ∘ ( 𝐷𝐺 ) )
7 neicvg.r ( 𝜑𝑁 𝐻 𝑀 )
8 neicvgel.x ( 𝜑𝑋𝐵 )
9 neicvgel.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
10 3 6 7 neicvgrcomplex ( 𝜑 → ( 𝐵𝑆 ) ∈ 𝒫 𝐵 )
11 1 2 3 4 5 6 7 8 10 neicvgel1 ( 𝜑 → ( ( 𝐵𝑆 ) ∈ ( 𝑁𝑋 ) ↔ ¬ ( 𝐵 ∖ ( 𝐵𝑆 ) ) ∈ ( 𝑀𝑋 ) ) )
12 9 elpwid ( 𝜑𝑆𝐵 )
13 dfss4 ( 𝑆𝐵 ↔ ( 𝐵 ∖ ( 𝐵𝑆 ) ) = 𝑆 )
14 12 13 sylib ( 𝜑 → ( 𝐵 ∖ ( 𝐵𝑆 ) ) = 𝑆 )
15 14 eleq1d ( 𝜑 → ( ( 𝐵 ∖ ( 𝐵𝑆 ) ) ∈ ( 𝑀𝑋 ) ↔ 𝑆 ∈ ( 𝑀𝑋 ) ) )
16 15 notbid ( 𝜑 → ( ¬ ( 𝐵 ∖ ( 𝐵𝑆 ) ) ∈ ( 𝑀𝑋 ) ↔ ¬ 𝑆 ∈ ( 𝑀𝑋 ) ) )
17 11 16 bitrd ( 𝜑 → ( ( 𝐵𝑆 ) ∈ ( 𝑁𝑋 ) ↔ ¬ 𝑆 ∈ ( 𝑀𝑋 ) ) )