Metamath Proof Explorer


Theorem neicvgel2

Description: The complement of a subset being an element of a neighborhood at a point is equivalent to that subset not being a element of the convergent at that point. (Contributed by RP, 12-Jun-2021)

Ref Expression
Hypotheses neicvg.o O=iV,jVk𝒫jiljmi|lkm
neicvg.p P=nVp𝒫n𝒫no𝒫nnpno
neicvg.d D=PB
neicvg.f F=𝒫BOB
neicvg.g G=BO𝒫B
neicvg.h H=FDG
neicvg.r φNHM
neicvgel.x φXB
neicvgel.s φS𝒫B
Assertion neicvgel2 φBSNX¬SMX

Proof

Step Hyp Ref Expression
1 neicvg.o O=iV,jVk𝒫jiljmi|lkm
2 neicvg.p P=nVp𝒫n𝒫no𝒫nnpno
3 neicvg.d D=PB
4 neicvg.f F=𝒫BOB
5 neicvg.g G=BO𝒫B
6 neicvg.h H=FDG
7 neicvg.r φNHM
8 neicvgel.x φXB
9 neicvgel.s φS𝒫B
10 3 6 7 neicvgrcomplex φBS𝒫B
11 1 2 3 4 5 6 7 8 10 neicvgel1 φBSNX¬BBSMX
12 9 elpwid φSB
13 dfss4 SBBBS=S
14 12 13 sylib φBBS=S
15 14 eleq1d φBBSMXSMX
16 15 notbid φ¬BBSMX¬SMX
17 11 16 bitrd φBSNX¬SMX