Step |
Hyp |
Ref |
Expression |
1 |
|
nne |
|- ( -. ( A i^i B ) =/= A <-> ( A i^i B ) = A ) |
2 |
|
neeq1 |
|- ( ( A i^i B ) = A -> ( ( A i^i B ) =/= B <-> A =/= B ) ) |
3 |
2
|
biimprcd |
|- ( A =/= B -> ( ( A i^i B ) = A -> ( A i^i B ) =/= B ) ) |
4 |
1 3
|
syl5bi |
|- ( A =/= B -> ( -. ( A i^i B ) =/= A -> ( A i^i B ) =/= B ) ) |
5 |
4
|
orrd |
|- ( A =/= B -> ( ( A i^i B ) =/= A \/ ( A i^i B ) =/= B ) ) |
6 |
|
inss1 |
|- ( A i^i B ) C_ A |
7 |
6
|
jctl |
|- ( ( A i^i B ) =/= A -> ( ( A i^i B ) C_ A /\ ( A i^i B ) =/= A ) ) |
8 |
|
inss2 |
|- ( A i^i B ) C_ B |
9 |
8
|
jctl |
|- ( ( A i^i B ) =/= B -> ( ( A i^i B ) C_ B /\ ( A i^i B ) =/= B ) ) |
10 |
7 9
|
orim12i |
|- ( ( ( A i^i B ) =/= A \/ ( A i^i B ) =/= B ) -> ( ( ( A i^i B ) C_ A /\ ( A i^i B ) =/= A ) \/ ( ( A i^i B ) C_ B /\ ( A i^i B ) =/= B ) ) ) |
11 |
5 10
|
syl |
|- ( A =/= B -> ( ( ( A i^i B ) C_ A /\ ( A i^i B ) =/= A ) \/ ( ( A i^i B ) C_ B /\ ( A i^i B ) =/= B ) ) ) |
12 |
|
ineq2 |
|- ( A = B -> ( A i^i A ) = ( A i^i B ) ) |
13 |
|
inidm |
|- ( A i^i A ) = A |
14 |
12 13
|
eqtr3di |
|- ( A = B -> ( A i^i B ) = A ) |
15 |
14
|
necon3i |
|- ( ( A i^i B ) =/= A -> A =/= B ) |
16 |
15
|
adantl |
|- ( ( ( A i^i B ) C_ A /\ ( A i^i B ) =/= A ) -> A =/= B ) |
17 |
|
ineq1 |
|- ( A = B -> ( A i^i B ) = ( B i^i B ) ) |
18 |
|
inidm |
|- ( B i^i B ) = B |
19 |
17 18
|
eqtrdi |
|- ( A = B -> ( A i^i B ) = B ) |
20 |
19
|
necon3i |
|- ( ( A i^i B ) =/= B -> A =/= B ) |
21 |
20
|
adantl |
|- ( ( ( A i^i B ) C_ B /\ ( A i^i B ) =/= B ) -> A =/= B ) |
22 |
16 21
|
jaoi |
|- ( ( ( ( A i^i B ) C_ A /\ ( A i^i B ) =/= A ) \/ ( ( A i^i B ) C_ B /\ ( A i^i B ) =/= B ) ) -> A =/= B ) |
23 |
11 22
|
impbii |
|- ( A =/= B <-> ( ( ( A i^i B ) C_ A /\ ( A i^i B ) =/= A ) \/ ( ( A i^i B ) C_ B /\ ( A i^i B ) =/= B ) ) ) |
24 |
|
df-pss |
|- ( ( A i^i B ) C. A <-> ( ( A i^i B ) C_ A /\ ( A i^i B ) =/= A ) ) |
25 |
|
df-pss |
|- ( ( A i^i B ) C. B <-> ( ( A i^i B ) C_ B /\ ( A i^i B ) =/= B ) ) |
26 |
24 25
|
orbi12i |
|- ( ( ( A i^i B ) C. A \/ ( A i^i B ) C. B ) <-> ( ( ( A i^i B ) C_ A /\ ( A i^i B ) =/= A ) \/ ( ( A i^i B ) C_ B /\ ( A i^i B ) =/= B ) ) ) |
27 |
23 26
|
bitr4i |
|- ( A =/= B <-> ( ( A i^i B ) C. A \/ ( A i^i B ) C. B ) ) |