Metamath Proof Explorer


Theorem nepss

Description: Two classes are unequal iff their intersection is a proper subset of one of them. (Contributed by Scott Fenton, 23-Feb-2011)

Ref Expression
Assertion nepss ( 𝐴𝐵 ↔ ( ( 𝐴𝐵 ) ⊊ 𝐴 ∨ ( 𝐴𝐵 ) ⊊ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 nne ( ¬ ( 𝐴𝐵 ) ≠ 𝐴 ↔ ( 𝐴𝐵 ) = 𝐴 )
2 neeq1 ( ( 𝐴𝐵 ) = 𝐴 → ( ( 𝐴𝐵 ) ≠ 𝐵𝐴𝐵 ) )
3 2 biimprcd ( 𝐴𝐵 → ( ( 𝐴𝐵 ) = 𝐴 → ( 𝐴𝐵 ) ≠ 𝐵 ) )
4 1 3 syl5bi ( 𝐴𝐵 → ( ¬ ( 𝐴𝐵 ) ≠ 𝐴 → ( 𝐴𝐵 ) ≠ 𝐵 ) )
5 4 orrd ( 𝐴𝐵 → ( ( 𝐴𝐵 ) ≠ 𝐴 ∨ ( 𝐴𝐵 ) ≠ 𝐵 ) )
6 inss1 ( 𝐴𝐵 ) ⊆ 𝐴
7 6 jctl ( ( 𝐴𝐵 ) ≠ 𝐴 → ( ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐵 ) ≠ 𝐴 ) )
8 inss2 ( 𝐴𝐵 ) ⊆ 𝐵
9 8 jctl ( ( 𝐴𝐵 ) ≠ 𝐵 → ( ( 𝐴𝐵 ) ⊆ 𝐵 ∧ ( 𝐴𝐵 ) ≠ 𝐵 ) )
10 7 9 orim12i ( ( ( 𝐴𝐵 ) ≠ 𝐴 ∨ ( 𝐴𝐵 ) ≠ 𝐵 ) → ( ( ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐵 ) ≠ 𝐴 ) ∨ ( ( 𝐴𝐵 ) ⊆ 𝐵 ∧ ( 𝐴𝐵 ) ≠ 𝐵 ) ) )
11 5 10 syl ( 𝐴𝐵 → ( ( ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐵 ) ≠ 𝐴 ) ∨ ( ( 𝐴𝐵 ) ⊆ 𝐵 ∧ ( 𝐴𝐵 ) ≠ 𝐵 ) ) )
12 inidm ( 𝐴𝐴 ) = 𝐴
13 ineq2 ( 𝐴 = 𝐵 → ( 𝐴𝐴 ) = ( 𝐴𝐵 ) )
14 12 13 syl5reqr ( 𝐴 = 𝐵 → ( 𝐴𝐵 ) = 𝐴 )
15 14 necon3i ( ( 𝐴𝐵 ) ≠ 𝐴𝐴𝐵 )
16 15 adantl ( ( ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐵 ) ≠ 𝐴 ) → 𝐴𝐵 )
17 ineq1 ( 𝐴 = 𝐵 → ( 𝐴𝐵 ) = ( 𝐵𝐵 ) )
18 inidm ( 𝐵𝐵 ) = 𝐵
19 17 18 eqtrdi ( 𝐴 = 𝐵 → ( 𝐴𝐵 ) = 𝐵 )
20 19 necon3i ( ( 𝐴𝐵 ) ≠ 𝐵𝐴𝐵 )
21 20 adantl ( ( ( 𝐴𝐵 ) ⊆ 𝐵 ∧ ( 𝐴𝐵 ) ≠ 𝐵 ) → 𝐴𝐵 )
22 16 21 jaoi ( ( ( ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐵 ) ≠ 𝐴 ) ∨ ( ( 𝐴𝐵 ) ⊆ 𝐵 ∧ ( 𝐴𝐵 ) ≠ 𝐵 ) ) → 𝐴𝐵 )
23 11 22 impbii ( 𝐴𝐵 ↔ ( ( ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐵 ) ≠ 𝐴 ) ∨ ( ( 𝐴𝐵 ) ⊆ 𝐵 ∧ ( 𝐴𝐵 ) ≠ 𝐵 ) ) )
24 df-pss ( ( 𝐴𝐵 ) ⊊ 𝐴 ↔ ( ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐵 ) ≠ 𝐴 ) )
25 df-pss ( ( 𝐴𝐵 ) ⊊ 𝐵 ↔ ( ( 𝐴𝐵 ) ⊆ 𝐵 ∧ ( 𝐴𝐵 ) ≠ 𝐵 ) )
26 24 25 orbi12i ( ( ( 𝐴𝐵 ) ⊊ 𝐴 ∨ ( 𝐴𝐵 ) ⊊ 𝐵 ) ↔ ( ( ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐵 ) ≠ 𝐴 ) ∨ ( ( 𝐴𝐵 ) ⊆ 𝐵 ∧ ( 𝐴𝐵 ) ≠ 𝐵 ) ) )
27 23 26 bitr4i ( 𝐴𝐵 ↔ ( ( 𝐴𝐵 ) ⊊ 𝐴 ∨ ( 𝐴𝐵 ) ⊊ 𝐵 ) )