| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmofval.1 |
|- N = ( S normOp T ) |
| 2 |
|
oveq12 |
|- ( ( s = S /\ t = T ) -> ( s normOp t ) = ( S normOp T ) ) |
| 3 |
2 1
|
eqtr4di |
|- ( ( s = S /\ t = T ) -> ( s normOp t ) = N ) |
| 4 |
3
|
cnveqd |
|- ( ( s = S /\ t = T ) -> `' ( s normOp t ) = `' N ) |
| 5 |
4
|
imaeq1d |
|- ( ( s = S /\ t = T ) -> ( `' ( s normOp t ) " RR ) = ( `' N " RR ) ) |
| 6 |
|
df-nghm |
|- NGHom = ( s e. NrmGrp , t e. NrmGrp |-> ( `' ( s normOp t ) " RR ) ) |
| 7 |
1
|
ovexi |
|- N e. _V |
| 8 |
7
|
cnvex |
|- `' N e. _V |
| 9 |
8
|
imaex |
|- ( `' N " RR ) e. _V |
| 10 |
5 6 9
|
ovmpoa |
|- ( ( S e. NrmGrp /\ T e. NrmGrp ) -> ( S NGHom T ) = ( `' N " RR ) ) |
| 11 |
6
|
mpondm0 |
|- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( S NGHom T ) = (/) ) |
| 12 |
|
nmoffn |
|- normOp Fn ( NrmGrp X. NrmGrp ) |
| 13 |
12
|
fndmi |
|- dom normOp = ( NrmGrp X. NrmGrp ) |
| 14 |
13
|
ndmov |
|- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( S normOp T ) = (/) ) |
| 15 |
1 14
|
eqtrid |
|- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> N = (/) ) |
| 16 |
15
|
cnveqd |
|- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> `' N = `' (/) ) |
| 17 |
|
cnv0 |
|- `' (/) = (/) |
| 18 |
16 17
|
eqtrdi |
|- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> `' N = (/) ) |
| 19 |
18
|
imaeq1d |
|- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( `' N " RR ) = ( (/) " RR ) ) |
| 20 |
|
0ima |
|- ( (/) " RR ) = (/) |
| 21 |
19 20
|
eqtrdi |
|- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( `' N " RR ) = (/) ) |
| 22 |
11 21
|
eqtr4d |
|- ( -. ( S e. NrmGrp /\ T e. NrmGrp ) -> ( S NGHom T ) = ( `' N " RR ) ) |
| 23 |
10 22
|
pm2.61i |
|- ( S NGHom T ) = ( `' N " RR ) |