| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ngpds2.x |
|- X = ( Base ` G ) |
| 2 |
|
ngpds2.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
ngpds2.m |
|- .- = ( -g ` G ) |
| 4 |
|
ngpds2.d |
|- D = ( dist ` G ) |
| 5 |
1 2 3 4
|
ngpds2 |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( ( A .- B ) D .0. ) ) |
| 6 |
|
ngpxms |
|- ( G e. NrmGrp -> G e. *MetSp ) |
| 7 |
6
|
3ad2ant1 |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> G e. *MetSp ) |
| 8 |
|
ngpgrp |
|- ( G e. NrmGrp -> G e. Grp ) |
| 9 |
1 3
|
grpsubcl |
|- ( ( G e. Grp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) |
| 10 |
8 9
|
syl3an1 |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) |
| 11 |
8
|
3ad2ant1 |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> G e. Grp ) |
| 12 |
1 2
|
grpidcl |
|- ( G e. Grp -> .0. e. X ) |
| 13 |
11 12
|
syl |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> .0. e. X ) |
| 14 |
1 4
|
xmssym |
|- ( ( G e. *MetSp /\ ( A .- B ) e. X /\ .0. e. X ) -> ( ( A .- B ) D .0. ) = ( .0. D ( A .- B ) ) ) |
| 15 |
7 10 13 14
|
syl3anc |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( A .- B ) D .0. ) = ( .0. D ( A .- B ) ) ) |
| 16 |
5 15
|
eqtrd |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( .0. D ( A .- B ) ) ) |