| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 |  |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) | 
						
							| 2 |  | elnn1uz2 |  |-  ( N e. NN <-> ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) ) | 
						
							| 3 |  | orc |  |-  ( N = 1 -> ( N = 1 \/ 2 < N ) ) | 
						
							| 4 | 3 | a1d |  |-  ( N = 1 -> ( N e. Odd -> ( N = 1 \/ 2 < N ) ) ) | 
						
							| 5 |  | 2z |  |-  2 e. ZZ | 
						
							| 6 | 5 | eluz1i |  |-  ( N e. ( ZZ>= ` 2 ) <-> ( N e. ZZ /\ 2 <_ N ) ) | 
						
							| 7 |  | 2re |  |-  2 e. RR | 
						
							| 8 | 7 | a1i |  |-  ( N e. ZZ -> 2 e. RR ) | 
						
							| 9 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 10 | 8 9 | leloed |  |-  ( N e. ZZ -> ( 2 <_ N <-> ( 2 < N \/ 2 = N ) ) ) | 
						
							| 11 |  | olc |  |-  ( 2 < N -> ( N = 1 \/ 2 < N ) ) | 
						
							| 12 | 11 | a1d |  |-  ( 2 < N -> ( N e. Odd -> ( N = 1 \/ 2 < N ) ) ) | 
						
							| 13 |  | eleq1 |  |-  ( N = 2 -> ( N e. Odd <-> 2 e. Odd ) ) | 
						
							| 14 | 13 | eqcoms |  |-  ( 2 = N -> ( N e. Odd <-> 2 e. Odd ) ) | 
						
							| 15 |  | 2noddALTV |  |-  2 e/ Odd | 
						
							| 16 |  | df-nel |  |-  ( 2 e/ Odd <-> -. 2 e. Odd ) | 
						
							| 17 |  | pm2.21 |  |-  ( -. 2 e. Odd -> ( 2 e. Odd -> ( N = 1 \/ 2 < N ) ) ) | 
						
							| 18 | 16 17 | sylbi |  |-  ( 2 e/ Odd -> ( 2 e. Odd -> ( N = 1 \/ 2 < N ) ) ) | 
						
							| 19 | 15 18 | ax-mp |  |-  ( 2 e. Odd -> ( N = 1 \/ 2 < N ) ) | 
						
							| 20 | 14 19 | biimtrdi |  |-  ( 2 = N -> ( N e. Odd -> ( N = 1 \/ 2 < N ) ) ) | 
						
							| 21 | 12 20 | jaoi |  |-  ( ( 2 < N \/ 2 = N ) -> ( N e. Odd -> ( N = 1 \/ 2 < N ) ) ) | 
						
							| 22 | 10 21 | biimtrdi |  |-  ( N e. ZZ -> ( 2 <_ N -> ( N e. Odd -> ( N = 1 \/ 2 < N ) ) ) ) | 
						
							| 23 | 22 | imp |  |-  ( ( N e. ZZ /\ 2 <_ N ) -> ( N e. Odd -> ( N = 1 \/ 2 < N ) ) ) | 
						
							| 24 | 6 23 | sylbi |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N e. Odd -> ( N = 1 \/ 2 < N ) ) ) | 
						
							| 25 | 4 24 | jaoi |  |-  ( ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) -> ( N e. Odd -> ( N = 1 \/ 2 < N ) ) ) | 
						
							| 26 | 2 25 | sylbi |  |-  ( N e. NN -> ( N e. Odd -> ( N = 1 \/ 2 < N ) ) ) | 
						
							| 27 |  | eleq1 |  |-  ( N = 0 -> ( N e. Odd <-> 0 e. Odd ) ) | 
						
							| 28 |  | 0noddALTV |  |-  0 e/ Odd | 
						
							| 29 |  | df-nel |  |-  ( 0 e/ Odd <-> -. 0 e. Odd ) | 
						
							| 30 |  | pm2.21 |  |-  ( -. 0 e. Odd -> ( 0 e. Odd -> ( N = 1 \/ 2 < N ) ) ) | 
						
							| 31 | 29 30 | sylbi |  |-  ( 0 e/ Odd -> ( 0 e. Odd -> ( N = 1 \/ 2 < N ) ) ) | 
						
							| 32 | 28 31 | ax-mp |  |-  ( 0 e. Odd -> ( N = 1 \/ 2 < N ) ) | 
						
							| 33 | 27 32 | biimtrdi |  |-  ( N = 0 -> ( N e. Odd -> ( N = 1 \/ 2 < N ) ) ) | 
						
							| 34 | 26 33 | jaoi |  |-  ( ( N e. NN \/ N = 0 ) -> ( N e. Odd -> ( N = 1 \/ 2 < N ) ) ) | 
						
							| 35 | 1 34 | sylbi |  |-  ( N e. NN0 -> ( N e. Odd -> ( N = 1 \/ 2 < N ) ) ) | 
						
							| 36 | 35 | imp |  |-  ( ( N e. NN0 /\ N e. Odd ) -> ( N = 1 \/ 2 < N ) ) |