| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddm1div2z |  |-  ( N e. Odd -> ( ( N - 1 ) / 2 ) e. ZZ ) | 
						
							| 2 | 1 | adantl |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ N e. Odd ) -> ( ( N - 1 ) / 2 ) e. ZZ ) | 
						
							| 3 |  | eluz2b1 |  |-  ( N e. ( ZZ>= ` 2 ) <-> ( N e. ZZ /\ 1 < N ) ) | 
						
							| 4 |  | 1red |  |-  ( N e. ZZ -> 1 e. RR ) | 
						
							| 5 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 6 | 4 5 | posdifd |  |-  ( N e. ZZ -> ( 1 < N <-> 0 < ( N - 1 ) ) ) | 
						
							| 7 | 6 | biimpa |  |-  ( ( N e. ZZ /\ 1 < N ) -> 0 < ( N - 1 ) ) | 
						
							| 8 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 9 | 8 | zred |  |-  ( N e. ZZ -> ( N - 1 ) e. RR ) | 
						
							| 10 |  | 2re |  |-  2 e. RR | 
						
							| 11 | 10 | a1i |  |-  ( N e. ZZ -> 2 e. RR ) | 
						
							| 12 |  | 2pos |  |-  0 < 2 | 
						
							| 13 | 12 | a1i |  |-  ( N e. ZZ -> 0 < 2 ) | 
						
							| 14 | 9 11 13 | 3jca |  |-  ( N e. ZZ -> ( ( N - 1 ) e. RR /\ 2 e. RR /\ 0 < 2 ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( N e. ZZ /\ 1 < N ) -> ( ( N - 1 ) e. RR /\ 2 e. RR /\ 0 < 2 ) ) | 
						
							| 16 |  | gt0div |  |-  ( ( ( N - 1 ) e. RR /\ 2 e. RR /\ 0 < 2 ) -> ( 0 < ( N - 1 ) <-> 0 < ( ( N - 1 ) / 2 ) ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( N e. ZZ /\ 1 < N ) -> ( 0 < ( N - 1 ) <-> 0 < ( ( N - 1 ) / 2 ) ) ) | 
						
							| 18 | 7 17 | mpbid |  |-  ( ( N e. ZZ /\ 1 < N ) -> 0 < ( ( N - 1 ) / 2 ) ) | 
						
							| 19 | 3 18 | sylbi |  |-  ( N e. ( ZZ>= ` 2 ) -> 0 < ( ( N - 1 ) / 2 ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ N e. Odd ) -> 0 < ( ( N - 1 ) / 2 ) ) | 
						
							| 21 |  | elnnz |  |-  ( ( ( N - 1 ) / 2 ) e. NN <-> ( ( ( N - 1 ) / 2 ) e. ZZ /\ 0 < ( ( N - 1 ) / 2 ) ) ) | 
						
							| 22 | 2 20 21 | sylanbrc |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ N e. Odd ) -> ( ( N - 1 ) / 2 ) e. NN ) |