Metamath Proof Explorer


Theorem nn0o1gt2ALTV

Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020) (Revised by AV, 21-Jun-2020)

Ref Expression
Assertion nn0o1gt2ALTV N 0 N Odd N = 1 2 < N

Proof

Step Hyp Ref Expression
1 elnn0 N 0 N N = 0
2 elnn1uz2 N N = 1 N 2
3 orc N = 1 N = 1 2 < N
4 3 a1d N = 1 N Odd N = 1 2 < N
5 2z 2
6 5 eluz1i N 2 N 2 N
7 2re 2
8 7 a1i N 2
9 zre N N
10 8 9 leloed N 2 N 2 < N 2 = N
11 olc 2 < N N = 1 2 < N
12 11 a1d 2 < N N Odd N = 1 2 < N
13 eleq1 N = 2 N Odd 2 Odd
14 13 eqcoms 2 = N N Odd 2 Odd
15 2noddALTV 2 Odd
16 df-nel 2 Odd ¬ 2 Odd
17 pm2.21 ¬ 2 Odd 2 Odd N = 1 2 < N
18 16 17 sylbi 2 Odd 2 Odd N = 1 2 < N
19 15 18 ax-mp 2 Odd N = 1 2 < N
20 14 19 syl6bi 2 = N N Odd N = 1 2 < N
21 12 20 jaoi 2 < N 2 = N N Odd N = 1 2 < N
22 10 21 syl6bi N 2 N N Odd N = 1 2 < N
23 22 imp N 2 N N Odd N = 1 2 < N
24 6 23 sylbi N 2 N Odd N = 1 2 < N
25 4 24 jaoi N = 1 N 2 N Odd N = 1 2 < N
26 2 25 sylbi N N Odd N = 1 2 < N
27 eleq1 N = 0 N Odd 0 Odd
28 0noddALTV 0 Odd
29 df-nel 0 Odd ¬ 0 Odd
30 pm2.21 ¬ 0 Odd 0 Odd N = 1 2 < N
31 29 30 sylbi 0 Odd 0 Odd N = 1 2 < N
32 28 31 ax-mp 0 Odd N = 1 2 < N
33 27 32 syl6bi N = 0 N Odd N = 1 2 < N
34 26 33 jaoi N N = 0 N Odd N = 1 2 < N
35 1 34 sylbi N 0 N Odd N = 1 2 < N
36 35 imp N 0 N Odd N = 1 2 < N