| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 2 |  | elnn1uz2 | ⊢ ( 𝑁  ∈  ℕ  ↔  ( 𝑁  =  1  ∨  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 3 |  | orc | ⊢ ( 𝑁  =  1  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) | 
						
							| 4 | 3 | a1d | ⊢ ( 𝑁  =  1  →  ( 𝑁  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 5 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 6 | 5 | eluz1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑁  ∈  ℤ  ∧  2  ≤  𝑁 ) ) | 
						
							| 7 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑁  ∈  ℤ  →  2  ∈  ℝ ) | 
						
							| 9 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 10 | 8 9 | leloed | ⊢ ( 𝑁  ∈  ℤ  →  ( 2  ≤  𝑁  ↔  ( 2  <  𝑁  ∨  2  =  𝑁 ) ) ) | 
						
							| 11 |  | olc | ⊢ ( 2  <  𝑁  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) | 
						
							| 12 | 11 | a1d | ⊢ ( 2  <  𝑁  →  ( 𝑁  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 13 |  | eleq1 | ⊢ ( 𝑁  =  2  →  ( 𝑁  ∈   Odd   ↔  2  ∈   Odd  ) ) | 
						
							| 14 | 13 | eqcoms | ⊢ ( 2  =  𝑁  →  ( 𝑁  ∈   Odd   ↔  2  ∈   Odd  ) ) | 
						
							| 15 |  | 2noddALTV | ⊢ 2  ∉   Odd | 
						
							| 16 |  | df-nel | ⊢ ( 2  ∉   Odd   ↔  ¬  2  ∈   Odd  ) | 
						
							| 17 |  | pm2.21 | ⊢ ( ¬  2  ∈   Odd   →  ( 2  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 18 | 16 17 | sylbi | ⊢ ( 2  ∉   Odd   →  ( 2  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 19 | 15 18 | ax-mp | ⊢ ( 2  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) | 
						
							| 20 | 14 19 | biimtrdi | ⊢ ( 2  =  𝑁  →  ( 𝑁  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 21 | 12 20 | jaoi | ⊢ ( ( 2  <  𝑁  ∨  2  =  𝑁 )  →  ( 𝑁  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 22 | 10 21 | biimtrdi | ⊢ ( 𝑁  ∈  ℤ  →  ( 2  ≤  𝑁  →  ( 𝑁  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( 𝑁  ∈  ℤ  ∧  2  ≤  𝑁 )  →  ( 𝑁  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 24 | 6 23 | sylbi | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 25 | 4 24 | jaoi | ⊢ ( ( 𝑁  =  1  ∨  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑁  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 26 | 2 25 | sylbi | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 27 |  | eleq1 | ⊢ ( 𝑁  =  0  →  ( 𝑁  ∈   Odd   ↔  0  ∈   Odd  ) ) | 
						
							| 28 |  | 0noddALTV | ⊢ 0  ∉   Odd | 
						
							| 29 |  | df-nel | ⊢ ( 0  ∉   Odd   ↔  ¬  0  ∈   Odd  ) | 
						
							| 30 |  | pm2.21 | ⊢ ( ¬  0  ∈   Odd   →  ( 0  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 31 | 29 30 | sylbi | ⊢ ( 0  ∉   Odd   →  ( 0  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 32 | 28 31 | ax-mp | ⊢ ( 0  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) | 
						
							| 33 | 27 32 | biimtrdi | ⊢ ( 𝑁  =  0  →  ( 𝑁  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 34 | 26 33 | jaoi | ⊢ ( ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 )  →  ( 𝑁  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 35 | 1 34 | sylbi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  ∈   Odd   →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) ) | 
						
							| 36 | 35 | imp | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑁  ∈   Odd  )  →  ( 𝑁  =  1  ∨  2  <  𝑁 ) ) |