Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
2 |
|
elnn1uz2 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) |
3 |
|
orc |
⊢ ( 𝑁 = 1 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |
4 |
3
|
a1d |
⊢ ( 𝑁 = 1 → ( 𝑁 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
5 |
|
2z |
⊢ 2 ∈ ℤ |
6 |
5
|
eluz1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) ) |
7 |
|
2re |
⊢ 2 ∈ ℝ |
8 |
7
|
a1i |
⊢ ( 𝑁 ∈ ℤ → 2 ∈ ℝ ) |
9 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
10 |
8 9
|
leloed |
⊢ ( 𝑁 ∈ ℤ → ( 2 ≤ 𝑁 ↔ ( 2 < 𝑁 ∨ 2 = 𝑁 ) ) ) |
11 |
|
olc |
⊢ ( 2 < 𝑁 → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |
12 |
11
|
a1d |
⊢ ( 2 < 𝑁 → ( 𝑁 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
13 |
|
eleq1 |
⊢ ( 𝑁 = 2 → ( 𝑁 ∈ Odd ↔ 2 ∈ Odd ) ) |
14 |
13
|
eqcoms |
⊢ ( 2 = 𝑁 → ( 𝑁 ∈ Odd ↔ 2 ∈ Odd ) ) |
15 |
|
2noddALTV |
⊢ 2 ∉ Odd |
16 |
|
df-nel |
⊢ ( 2 ∉ Odd ↔ ¬ 2 ∈ Odd ) |
17 |
|
pm2.21 |
⊢ ( ¬ 2 ∈ Odd → ( 2 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
18 |
16 17
|
sylbi |
⊢ ( 2 ∉ Odd → ( 2 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
19 |
15 18
|
ax-mp |
⊢ ( 2 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |
20 |
14 19
|
syl6bi |
⊢ ( 2 = 𝑁 → ( 𝑁 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
21 |
12 20
|
jaoi |
⊢ ( ( 2 < 𝑁 ∨ 2 = 𝑁 ) → ( 𝑁 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
22 |
10 21
|
syl6bi |
⊢ ( 𝑁 ∈ ℤ → ( 2 ≤ 𝑁 → ( 𝑁 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) ) |
23 |
22
|
imp |
⊢ ( ( 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 𝑁 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
24 |
6 23
|
sylbi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
25 |
4 24
|
jaoi |
⊢ ( ( 𝑁 = 1 ∨ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑁 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
26 |
2 25
|
sylbi |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
27 |
|
eleq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 ∈ Odd ↔ 0 ∈ Odd ) ) |
28 |
|
0noddALTV |
⊢ 0 ∉ Odd |
29 |
|
df-nel |
⊢ ( 0 ∉ Odd ↔ ¬ 0 ∈ Odd ) |
30 |
|
pm2.21 |
⊢ ( ¬ 0 ∈ Odd → ( 0 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
31 |
29 30
|
sylbi |
⊢ ( 0 ∉ Odd → ( 0 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
32 |
28 31
|
ax-mp |
⊢ ( 0 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |
33 |
27 32
|
syl6bi |
⊢ ( 𝑁 = 0 → ( 𝑁 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
34 |
26 33
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 𝑁 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
35 |
1 34
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ Odd → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) ) |
36 |
35
|
imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) |