Step |
Hyp |
Ref |
Expression |
1 |
|
nnsgrp.m |
|- M = ( CCfld |`s NN ) |
2 |
|
nnsscn |
|- NN C_ CC |
3 |
1
|
cnfldsrngbas |
|- ( NN C_ CC -> NN = ( Base ` M ) ) |
4 |
2 3
|
ax-mp |
|- NN = ( Base ` M ) |
5 |
|
nnex |
|- NN e. _V |
6 |
1
|
cnfldsrngadd |
|- ( NN e. _V -> + = ( +g ` M ) ) |
7 |
5 6
|
ax-mp |
|- + = ( +g ` M ) |
8 |
4 7
|
isnmnd |
|- ( A. z e. NN E. x e. NN ( z + x ) =/= x -> M e/ Mnd ) |
9 |
|
1nn |
|- 1 e. NN |
10 |
9
|
a1i |
|- ( z e. NN -> 1 e. NN ) |
11 |
|
oveq2 |
|- ( x = 1 -> ( z + x ) = ( z + 1 ) ) |
12 |
|
id |
|- ( x = 1 -> x = 1 ) |
13 |
11 12
|
neeq12d |
|- ( x = 1 -> ( ( z + x ) =/= x <-> ( z + 1 ) =/= 1 ) ) |
14 |
13
|
adantl |
|- ( ( z e. NN /\ x = 1 ) -> ( ( z + x ) =/= x <-> ( z + 1 ) =/= 1 ) ) |
15 |
|
nnne0 |
|- ( z e. NN -> z =/= 0 ) |
16 |
15
|
necomd |
|- ( z e. NN -> 0 =/= z ) |
17 |
|
1cnd |
|- ( z e. NN -> 1 e. CC ) |
18 |
|
nncn |
|- ( z e. NN -> z e. CC ) |
19 |
17 17 18
|
subadd2d |
|- ( z e. NN -> ( ( 1 - 1 ) = z <-> ( z + 1 ) = 1 ) ) |
20 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
21 |
20
|
a1i |
|- ( z e. NN -> ( 1 - 1 ) = 0 ) |
22 |
21
|
eqeq1d |
|- ( z e. NN -> ( ( 1 - 1 ) = z <-> 0 = z ) ) |
23 |
19 22
|
bitr3d |
|- ( z e. NN -> ( ( z + 1 ) = 1 <-> 0 = z ) ) |
24 |
23
|
necon3bid |
|- ( z e. NN -> ( ( z + 1 ) =/= 1 <-> 0 =/= z ) ) |
25 |
16 24
|
mpbird |
|- ( z e. NN -> ( z + 1 ) =/= 1 ) |
26 |
10 14 25
|
rspcedvd |
|- ( z e. NN -> E. x e. NN ( z + x ) =/= x ) |
27 |
8 26
|
mprg |
|- M e/ Mnd |