Metamath Proof Explorer


Theorem nnsgrpnmnd

Description: The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020)

Ref Expression
Hypothesis nnsgrp.m
|- M = ( CCfld |`s NN )
Assertion nnsgrpnmnd
|- M e/ Mnd

Proof

Step Hyp Ref Expression
1 nnsgrp.m
 |-  M = ( CCfld |`s NN )
2 nnsscn
 |-  NN C_ CC
3 1 cnfldsrngbas
 |-  ( NN C_ CC -> NN = ( Base ` M ) )
4 2 3 ax-mp
 |-  NN = ( Base ` M )
5 nnex
 |-  NN e. _V
6 1 cnfldsrngadd
 |-  ( NN e. _V -> + = ( +g ` M ) )
7 5 6 ax-mp
 |-  + = ( +g ` M )
8 4 7 isnmnd
 |-  ( A. z e. NN E. x e. NN ( z + x ) =/= x -> M e/ Mnd )
9 1nn
 |-  1 e. NN
10 9 a1i
 |-  ( z e. NN -> 1 e. NN )
11 oveq2
 |-  ( x = 1 -> ( z + x ) = ( z + 1 ) )
12 id
 |-  ( x = 1 -> x = 1 )
13 11 12 neeq12d
 |-  ( x = 1 -> ( ( z + x ) =/= x <-> ( z + 1 ) =/= 1 ) )
14 13 adantl
 |-  ( ( z e. NN /\ x = 1 ) -> ( ( z + x ) =/= x <-> ( z + 1 ) =/= 1 ) )
15 nnne0
 |-  ( z e. NN -> z =/= 0 )
16 15 necomd
 |-  ( z e. NN -> 0 =/= z )
17 1cnd
 |-  ( z e. NN -> 1 e. CC )
18 nncn
 |-  ( z e. NN -> z e. CC )
19 17 17 18 subadd2d
 |-  ( z e. NN -> ( ( 1 - 1 ) = z <-> ( z + 1 ) = 1 ) )
20 1m1e0
 |-  ( 1 - 1 ) = 0
21 20 a1i
 |-  ( z e. NN -> ( 1 - 1 ) = 0 )
22 21 eqeq1d
 |-  ( z e. NN -> ( ( 1 - 1 ) = z <-> 0 = z ) )
23 19 22 bitr3d
 |-  ( z e. NN -> ( ( z + 1 ) = 1 <-> 0 = z ) )
24 23 necon3bid
 |-  ( z e. NN -> ( ( z + 1 ) =/= 1 <-> 0 =/= z ) )
25 16 24 mpbird
 |-  ( z e. NN -> ( z + 1 ) =/= 1 )
26 10 14 25 rspcedvd
 |-  ( z e. NN -> E. x e. NN ( z + x ) =/= x )
27 8 26 mprg
 |-  M e/ Mnd