| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0mnd.g |
|- M = { <. ( Base ` ndx ) , NN0 >. , <. ( +g ` ndx ) , + >. } |
| 2 |
|
nn0addcl |
|- ( ( x e. NN0 /\ y e. NN0 ) -> ( x + y ) e. NN0 ) |
| 3 |
|
nn0cn |
|- ( x e. NN0 -> x e. CC ) |
| 4 |
|
nn0cn |
|- ( y e. NN0 -> y e. CC ) |
| 5 |
|
nn0cn |
|- ( z e. NN0 -> z e. CC ) |
| 6 |
3 4 5
|
3anim123i |
|- ( ( x e. NN0 /\ y e. NN0 /\ z e. NN0 ) -> ( x e. CC /\ y e. CC /\ z e. CC ) ) |
| 7 |
6
|
3expa |
|- ( ( ( x e. NN0 /\ y e. NN0 ) /\ z e. NN0 ) -> ( x e. CC /\ y e. CC /\ z e. CC ) ) |
| 8 |
|
addass |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
| 9 |
7 8
|
syl |
|- ( ( ( x e. NN0 /\ y e. NN0 ) /\ z e. NN0 ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
| 10 |
9
|
ralrimiva |
|- ( ( x e. NN0 /\ y e. NN0 ) -> A. z e. NN0 ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
| 11 |
2 10
|
jca |
|- ( ( x e. NN0 /\ y e. NN0 ) -> ( ( x + y ) e. NN0 /\ A. z e. NN0 ( ( x + y ) + z ) = ( x + ( y + z ) ) ) ) |
| 12 |
11
|
rgen2 |
|- A. x e. NN0 A. y e. NN0 ( ( x + y ) e. NN0 /\ A. z e. NN0 ( ( x + y ) + z ) = ( x + ( y + z ) ) ) |
| 13 |
|
c0ex |
|- 0 e. _V |
| 14 |
|
eleq1 |
|- ( e = 0 -> ( e e. NN0 <-> 0 e. NN0 ) ) |
| 15 |
|
oveq1 |
|- ( e = 0 -> ( e + x ) = ( 0 + x ) ) |
| 16 |
15
|
eqeq1d |
|- ( e = 0 -> ( ( e + x ) = x <-> ( 0 + x ) = x ) ) |
| 17 |
|
oveq2 |
|- ( e = 0 -> ( x + e ) = ( x + 0 ) ) |
| 18 |
17
|
eqeq1d |
|- ( e = 0 -> ( ( x + e ) = x <-> ( x + 0 ) = x ) ) |
| 19 |
16 18
|
anbi12d |
|- ( e = 0 -> ( ( ( e + x ) = x /\ ( x + e ) = x ) <-> ( ( 0 + x ) = x /\ ( x + 0 ) = x ) ) ) |
| 20 |
19
|
ralbidv |
|- ( e = 0 -> ( A. x e. NN0 ( ( e + x ) = x /\ ( x + e ) = x ) <-> A. x e. NN0 ( ( 0 + x ) = x /\ ( x + 0 ) = x ) ) ) |
| 21 |
14 20
|
anbi12d |
|- ( e = 0 -> ( ( e e. NN0 /\ A. x e. NN0 ( ( e + x ) = x /\ ( x + e ) = x ) ) <-> ( 0 e. NN0 /\ A. x e. NN0 ( ( 0 + x ) = x /\ ( x + 0 ) = x ) ) ) ) |
| 22 |
|
0nn0 |
|- 0 e. NN0 |
| 23 |
3
|
addlidd |
|- ( x e. NN0 -> ( 0 + x ) = x ) |
| 24 |
3
|
addridd |
|- ( x e. NN0 -> ( x + 0 ) = x ) |
| 25 |
23 24
|
jca |
|- ( x e. NN0 -> ( ( 0 + x ) = x /\ ( x + 0 ) = x ) ) |
| 26 |
25
|
rgen |
|- A. x e. NN0 ( ( 0 + x ) = x /\ ( x + 0 ) = x ) |
| 27 |
22 26
|
pm3.2i |
|- ( 0 e. NN0 /\ A. x e. NN0 ( ( 0 + x ) = x /\ ( x + 0 ) = x ) ) |
| 28 |
13 21 27
|
ceqsexv2d |
|- E. e ( e e. NN0 /\ A. x e. NN0 ( ( e + x ) = x /\ ( x + e ) = x ) ) |
| 29 |
|
df-rex |
|- ( E. e e. NN0 A. x e. NN0 ( ( e + x ) = x /\ ( x + e ) = x ) <-> E. e ( e e. NN0 /\ A. x e. NN0 ( ( e + x ) = x /\ ( x + e ) = x ) ) ) |
| 30 |
28 29
|
mpbir |
|- E. e e. NN0 A. x e. NN0 ( ( e + x ) = x /\ ( x + e ) = x ) |
| 31 |
12 30
|
pm3.2i |
|- ( A. x e. NN0 A. y e. NN0 ( ( x + y ) e. NN0 /\ A. z e. NN0 ( ( x + y ) + z ) = ( x + ( y + z ) ) ) /\ E. e e. NN0 A. x e. NN0 ( ( e + x ) = x /\ ( x + e ) = x ) ) |
| 32 |
|
nn0ex |
|- NN0 e. _V |
| 33 |
1
|
grpbase |
|- ( NN0 e. _V -> NN0 = ( Base ` M ) ) |
| 34 |
32 33
|
ax-mp |
|- NN0 = ( Base ` M ) |
| 35 |
|
addex |
|- + e. _V |
| 36 |
1
|
grpplusg |
|- ( + e. _V -> + = ( +g ` M ) ) |
| 37 |
35 36
|
ax-mp |
|- + = ( +g ` M ) |
| 38 |
34 37
|
ismnd |
|- ( M e. Mnd <-> ( A. x e. NN0 A. y e. NN0 ( ( x + y ) e. NN0 /\ A. z e. NN0 ( ( x + y ) + z ) = ( x + ( y + z ) ) ) /\ E. e e. NN0 A. x e. NN0 ( ( e + x ) = x /\ ( x + e ) = x ) ) ) |
| 39 |
31 38
|
mpbir |
|- M e. Mnd |