Metamath Proof Explorer


Theorem nn0mnd

Description: The set of nonnegative integers under (complex) addition is a monoid. Example in Lang p. 6. Remark: M could have also been written as ` ( CCfld |``s NN0 ) ` . (Contributed by AV, 27-Dec-2023)

Ref Expression
Hypothesis nn0mnd.g M = Base ndx 0 + ndx +
Assertion nn0mnd M Mnd

Proof

Step Hyp Ref Expression
1 nn0mnd.g M = Base ndx 0 + ndx +
2 nn0addcl x 0 y 0 x + y 0
3 nn0cn x 0 x
4 nn0cn y 0 y
5 nn0cn z 0 z
6 3 4 5 3anim123i x 0 y 0 z 0 x y z
7 6 3expa x 0 y 0 z 0 x y z
8 addass x y z x + y + z = x + y + z
9 7 8 syl x 0 y 0 z 0 x + y + z = x + y + z
10 9 ralrimiva x 0 y 0 z 0 x + y + z = x + y + z
11 2 10 jca x 0 y 0 x + y 0 z 0 x + y + z = x + y + z
12 11 rgen2 x 0 y 0 x + y 0 z 0 x + y + z = x + y + z
13 c0ex 0 V
14 eleq1 e = 0 e 0 0 0
15 oveq1 e = 0 e + x = 0 + x
16 15 eqeq1d e = 0 e + x = x 0 + x = x
17 oveq2 e = 0 x + e = x + 0
18 17 eqeq1d e = 0 x + e = x x + 0 = x
19 16 18 anbi12d e = 0 e + x = x x + e = x 0 + x = x x + 0 = x
20 19 ralbidv e = 0 x 0 e + x = x x + e = x x 0 0 + x = x x + 0 = x
21 14 20 anbi12d e = 0 e 0 x 0 e + x = x x + e = x 0 0 x 0 0 + x = x x + 0 = x
22 0nn0 0 0
23 3 addid2d x 0 0 + x = x
24 3 addid1d x 0 x + 0 = x
25 23 24 jca x 0 0 + x = x x + 0 = x
26 25 rgen x 0 0 + x = x x + 0 = x
27 22 26 pm3.2i 0 0 x 0 0 + x = x x + 0 = x
28 13 21 27 ceqsexv2d e e 0 x 0 e + x = x x + e = x
29 df-rex e 0 x 0 e + x = x x + e = x e e 0 x 0 e + x = x x + e = x
30 28 29 mpbir e 0 x 0 e + x = x x + e = x
31 12 30 pm3.2i x 0 y 0 x + y 0 z 0 x + y + z = x + y + z e 0 x 0 e + x = x x + e = x
32 nn0ex 0 V
33 1 grpbase 0 V 0 = Base M
34 32 33 ax-mp 0 = Base M
35 addex + V
36 1 grpplusg + V + = + M
37 35 36 ax-mp + = + M
38 34 37 ismnd M Mnd x 0 y 0 x + y 0 z 0 x + y + z = x + y + z e 0 x 0 e + x = x x + e = x
39 31 38 mpbir M Mnd