Step |
Hyp |
Ref |
Expression |
1 |
|
nn0mnd.g |
⊢ 𝑀 = { 〈 ( Base ‘ ndx ) , ℕ0 〉 , 〈 ( +g ‘ ndx ) , + 〉 } |
2 |
|
nn0addcl |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 + 𝑦 ) ∈ ℕ0 ) |
3 |
|
nn0cn |
⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ ) |
4 |
|
nn0cn |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℂ ) |
5 |
|
nn0cn |
⊢ ( 𝑧 ∈ ℕ0 → 𝑧 ∈ ℂ ) |
6 |
3 4 5
|
3anim123i |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0 ) → ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) |
7 |
6
|
3expa |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑧 ∈ ℕ0 ) → ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) |
8 |
|
addass |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑧 ∈ ℕ0 ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
10 |
9
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
11 |
2 10
|
jca |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑥 + 𝑦 ) ∈ ℕ0 ∧ ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ) |
12 |
11
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( ( 𝑥 + 𝑦 ) ∈ ℕ0 ∧ ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
13 |
|
c0ex |
⊢ 0 ∈ V |
14 |
|
eleq1 |
⊢ ( 𝑒 = 0 → ( 𝑒 ∈ ℕ0 ↔ 0 ∈ ℕ0 ) ) |
15 |
|
oveq1 |
⊢ ( 𝑒 = 0 → ( 𝑒 + 𝑥 ) = ( 0 + 𝑥 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑒 = 0 → ( ( 𝑒 + 𝑥 ) = 𝑥 ↔ ( 0 + 𝑥 ) = 𝑥 ) ) |
17 |
|
oveq2 |
⊢ ( 𝑒 = 0 → ( 𝑥 + 𝑒 ) = ( 𝑥 + 0 ) ) |
18 |
17
|
eqeq1d |
⊢ ( 𝑒 = 0 → ( ( 𝑥 + 𝑒 ) = 𝑥 ↔ ( 𝑥 + 0 ) = 𝑥 ) ) |
19 |
16 18
|
anbi12d |
⊢ ( 𝑒 = 0 → ( ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ↔ ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑒 = 0 → ( ∀ 𝑥 ∈ ℕ0 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ℕ0 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) ) |
21 |
14 20
|
anbi12d |
⊢ ( 𝑒 = 0 → ( ( 𝑒 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ↔ ( 0 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) ) ) |
22 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
23 |
3
|
addid2d |
⊢ ( 𝑥 ∈ ℕ0 → ( 0 + 𝑥 ) = 𝑥 ) |
24 |
3
|
addid1d |
⊢ ( 𝑥 ∈ ℕ0 → ( 𝑥 + 0 ) = 𝑥 ) |
25 |
23 24
|
jca |
⊢ ( 𝑥 ∈ ℕ0 → ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) |
26 |
25
|
rgen |
⊢ ∀ 𝑥 ∈ ℕ0 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) |
27 |
22 26
|
pm3.2i |
⊢ ( 0 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) |
28 |
13 21 27
|
ceqsexv2d |
⊢ ∃ 𝑒 ( 𝑒 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) |
29 |
|
df-rex |
⊢ ( ∃ 𝑒 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ↔ ∃ 𝑒 ( 𝑒 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) |
30 |
28 29
|
mpbir |
⊢ ∃ 𝑒 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) |
31 |
12 30
|
pm3.2i |
⊢ ( ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( ( 𝑥 + 𝑦 ) ∈ ℕ0 ∧ ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ∧ ∃ 𝑒 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) |
32 |
|
nn0ex |
⊢ ℕ0 ∈ V |
33 |
1
|
grpbase |
⊢ ( ℕ0 ∈ V → ℕ0 = ( Base ‘ 𝑀 ) ) |
34 |
32 33
|
ax-mp |
⊢ ℕ0 = ( Base ‘ 𝑀 ) |
35 |
|
addex |
⊢ + ∈ V |
36 |
1
|
grpplusg |
⊢ ( + ∈ V → + = ( +g ‘ 𝑀 ) ) |
37 |
35 36
|
ax-mp |
⊢ + = ( +g ‘ 𝑀 ) |
38 |
34 37
|
ismnd |
⊢ ( 𝑀 ∈ Mnd ↔ ( ∀ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( ( 𝑥 + 𝑦 ) ∈ ℕ0 ∧ ∀ 𝑧 ∈ ℕ0 ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) ∧ ∃ 𝑒 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( ( 𝑒 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑒 ) = 𝑥 ) ) ) |
39 |
31 38
|
mpbir |
⊢ 𝑀 ∈ Mnd |