Step |
Hyp |
Ref |
Expression |
1 |
|
nnsgrp.m |
⊢ 𝑀 = ( ℂfld ↾s ℕ ) |
2 |
|
nnsscn |
⊢ ℕ ⊆ ℂ |
3 |
1
|
cnfldsrngbas |
⊢ ( ℕ ⊆ ℂ → ℕ = ( Base ‘ 𝑀 ) ) |
4 |
2 3
|
ax-mp |
⊢ ℕ = ( Base ‘ 𝑀 ) |
5 |
|
nnex |
⊢ ℕ ∈ V |
6 |
1
|
cnfldsrngadd |
⊢ ( ℕ ∈ V → + = ( +g ‘ 𝑀 ) ) |
7 |
5 6
|
ax-mp |
⊢ + = ( +g ‘ 𝑀 ) |
8 |
4 7
|
isnmnd |
⊢ ( ∀ 𝑧 ∈ ℕ ∃ 𝑥 ∈ ℕ ( 𝑧 + 𝑥 ) ≠ 𝑥 → 𝑀 ∉ Mnd ) |
9 |
|
1nn |
⊢ 1 ∈ ℕ |
10 |
9
|
a1i |
⊢ ( 𝑧 ∈ ℕ → 1 ∈ ℕ ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝑧 + 𝑥 ) = ( 𝑧 + 1 ) ) |
12 |
|
id |
⊢ ( 𝑥 = 1 → 𝑥 = 1 ) |
13 |
11 12
|
neeq12d |
⊢ ( 𝑥 = 1 → ( ( 𝑧 + 𝑥 ) ≠ 𝑥 ↔ ( 𝑧 + 1 ) ≠ 1 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑥 = 1 ) → ( ( 𝑧 + 𝑥 ) ≠ 𝑥 ↔ ( 𝑧 + 1 ) ≠ 1 ) ) |
15 |
|
nnne0 |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ≠ 0 ) |
16 |
15
|
necomd |
⊢ ( 𝑧 ∈ ℕ → 0 ≠ 𝑧 ) |
17 |
|
1cnd |
⊢ ( 𝑧 ∈ ℕ → 1 ∈ ℂ ) |
18 |
|
nncn |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℂ ) |
19 |
17 17 18
|
subadd2d |
⊢ ( 𝑧 ∈ ℕ → ( ( 1 − 1 ) = 𝑧 ↔ ( 𝑧 + 1 ) = 1 ) ) |
20 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
21 |
20
|
a1i |
⊢ ( 𝑧 ∈ ℕ → ( 1 − 1 ) = 0 ) |
22 |
21
|
eqeq1d |
⊢ ( 𝑧 ∈ ℕ → ( ( 1 − 1 ) = 𝑧 ↔ 0 = 𝑧 ) ) |
23 |
19 22
|
bitr3d |
⊢ ( 𝑧 ∈ ℕ → ( ( 𝑧 + 1 ) = 1 ↔ 0 = 𝑧 ) ) |
24 |
23
|
necon3bid |
⊢ ( 𝑧 ∈ ℕ → ( ( 𝑧 + 1 ) ≠ 1 ↔ 0 ≠ 𝑧 ) ) |
25 |
16 24
|
mpbird |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 + 1 ) ≠ 1 ) |
26 |
10 14 25
|
rspcedvd |
⊢ ( 𝑧 ∈ ℕ → ∃ 𝑥 ∈ ℕ ( 𝑧 + 𝑥 ) ≠ 𝑥 ) |
27 |
8 26
|
mprg |
⊢ 𝑀 ∉ Mnd |