Metamath Proof Explorer


Theorem nnsgrpnmnd

Description: The structure of positive integers together with the addition of complex numbers is not a monoid. (Contributed by AV, 4-Feb-2020)

Ref Expression
Hypothesis nnsgrp.m 𝑀 = ( ℂflds ℕ )
Assertion nnsgrpnmnd 𝑀 ∉ Mnd

Proof

Step Hyp Ref Expression
1 nnsgrp.m 𝑀 = ( ℂflds ℕ )
2 nnsscn ℕ ⊆ ℂ
3 1 cnfldsrngbas ( ℕ ⊆ ℂ → ℕ = ( Base ‘ 𝑀 ) )
4 2 3 ax-mp ℕ = ( Base ‘ 𝑀 )
5 nnex ℕ ∈ V
6 1 cnfldsrngadd ( ℕ ∈ V → + = ( +g𝑀 ) )
7 5 6 ax-mp + = ( +g𝑀 )
8 4 7 isnmnd ( ∀ 𝑧 ∈ ℕ ∃ 𝑥 ∈ ℕ ( 𝑧 + 𝑥 ) ≠ 𝑥𝑀 ∉ Mnd )
9 1nn 1 ∈ ℕ
10 9 a1i ( 𝑧 ∈ ℕ → 1 ∈ ℕ )
11 oveq2 ( 𝑥 = 1 → ( 𝑧 + 𝑥 ) = ( 𝑧 + 1 ) )
12 id ( 𝑥 = 1 → 𝑥 = 1 )
13 11 12 neeq12d ( 𝑥 = 1 → ( ( 𝑧 + 𝑥 ) ≠ 𝑥 ↔ ( 𝑧 + 1 ) ≠ 1 ) )
14 13 adantl ( ( 𝑧 ∈ ℕ ∧ 𝑥 = 1 ) → ( ( 𝑧 + 𝑥 ) ≠ 𝑥 ↔ ( 𝑧 + 1 ) ≠ 1 ) )
15 nnne0 ( 𝑧 ∈ ℕ → 𝑧 ≠ 0 )
16 15 necomd ( 𝑧 ∈ ℕ → 0 ≠ 𝑧 )
17 1cnd ( 𝑧 ∈ ℕ → 1 ∈ ℂ )
18 nncn ( 𝑧 ∈ ℕ → 𝑧 ∈ ℂ )
19 17 17 18 subadd2d ( 𝑧 ∈ ℕ → ( ( 1 − 1 ) = 𝑧 ↔ ( 𝑧 + 1 ) = 1 ) )
20 1m1e0 ( 1 − 1 ) = 0
21 20 a1i ( 𝑧 ∈ ℕ → ( 1 − 1 ) = 0 )
22 21 eqeq1d ( 𝑧 ∈ ℕ → ( ( 1 − 1 ) = 𝑧 ↔ 0 = 𝑧 ) )
23 19 22 bitr3d ( 𝑧 ∈ ℕ → ( ( 𝑧 + 1 ) = 1 ↔ 0 = 𝑧 ) )
24 23 necon3bid ( 𝑧 ∈ ℕ → ( ( 𝑧 + 1 ) ≠ 1 ↔ 0 ≠ 𝑧 ) )
25 16 24 mpbird ( 𝑧 ∈ ℕ → ( 𝑧 + 1 ) ≠ 1 )
26 10 14 25 rspcedvd ( 𝑧 ∈ ℕ → ∃ 𝑥 ∈ ℕ ( 𝑧 + 𝑥 ) ≠ 𝑥 )
27 8 26 mprg 𝑀 ∉ Mnd