Step |
Hyp |
Ref |
Expression |
1 |
|
inidm |
|- ( ( I ` (/) ) i^i ( I ` (/) ) ) = ( I ` (/) ) |
2 |
|
0elpw |
|- (/) e. ~P B |
3 |
|
ineq1 |
|- ( s = (/) -> ( s i^i t ) = ( (/) i^i t ) ) |
4 |
3
|
eqeq1d |
|- ( s = (/) -> ( ( s i^i t ) = (/) <-> ( (/) i^i t ) = (/) ) ) |
5 |
|
fveq2 |
|- ( s = (/) -> ( I ` s ) = ( I ` (/) ) ) |
6 |
5
|
ineq1d |
|- ( s = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = ( ( I ` (/) ) i^i ( I ` t ) ) ) |
7 |
6
|
eqeq1d |
|- ( s = (/) -> ( ( ( I ` s ) i^i ( I ` t ) ) = (/) <-> ( ( I ` (/) ) i^i ( I ` t ) ) = (/) ) ) |
8 |
4 7
|
imbi12d |
|- ( s = (/) -> ( ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) <-> ( ( (/) i^i t ) = (/) -> ( ( I ` (/) ) i^i ( I ` t ) ) = (/) ) ) ) |
9 |
|
0in |
|- ( (/) i^i t ) = (/) |
10 |
|
pm5.5 |
|- ( ( (/) i^i t ) = (/) -> ( ( ( (/) i^i t ) = (/) -> ( ( I ` (/) ) i^i ( I ` t ) ) = (/) ) <-> ( ( I ` (/) ) i^i ( I ` t ) ) = (/) ) ) |
11 |
9 10
|
ax-mp |
|- ( ( ( (/) i^i t ) = (/) -> ( ( I ` (/) ) i^i ( I ` t ) ) = (/) ) <-> ( ( I ` (/) ) i^i ( I ` t ) ) = (/) ) |
12 |
8 11
|
bitrdi |
|- ( s = (/) -> ( ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) <-> ( ( I ` (/) ) i^i ( I ` t ) ) = (/) ) ) |
13 |
|
fveq2 |
|- ( t = (/) -> ( I ` t ) = ( I ` (/) ) ) |
14 |
13
|
ineq2d |
|- ( t = (/) -> ( ( I ` (/) ) i^i ( I ` t ) ) = ( ( I ` (/) ) i^i ( I ` (/) ) ) ) |
15 |
14
|
eqeq1d |
|- ( t = (/) -> ( ( ( I ` (/) ) i^i ( I ` t ) ) = (/) <-> ( ( I ` (/) ) i^i ( I ` (/) ) ) = (/) ) ) |
16 |
12 15
|
rspc2v |
|- ( ( (/) e. ~P B /\ (/) e. ~P B ) -> ( A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) -> ( ( I ` (/) ) i^i ( I ` (/) ) ) = (/) ) ) |
17 |
2 2 16
|
mp2an |
|- ( A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) -> ( ( I ` (/) ) i^i ( I ` (/) ) ) = (/) ) |
18 |
1 17
|
eqtr3id |
|- ( A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) -> ( I ` (/) ) = (/) ) |