| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inidm |  |-  ( ( I ` (/) ) i^i ( I ` (/) ) ) = ( I ` (/) ) | 
						
							| 2 |  | 0elpw |  |-  (/) e. ~P B | 
						
							| 3 |  | ineq1 |  |-  ( s = (/) -> ( s i^i t ) = ( (/) i^i t ) ) | 
						
							| 4 | 3 | eqeq1d |  |-  ( s = (/) -> ( ( s i^i t ) = (/) <-> ( (/) i^i t ) = (/) ) ) | 
						
							| 5 |  | fveq2 |  |-  ( s = (/) -> ( I ` s ) = ( I ` (/) ) ) | 
						
							| 6 | 5 | ineq1d |  |-  ( s = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = ( ( I ` (/) ) i^i ( I ` t ) ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( s = (/) -> ( ( ( I ` s ) i^i ( I ` t ) ) = (/) <-> ( ( I ` (/) ) i^i ( I ` t ) ) = (/) ) ) | 
						
							| 8 | 4 7 | imbi12d |  |-  ( s = (/) -> ( ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) <-> ( ( (/) i^i t ) = (/) -> ( ( I ` (/) ) i^i ( I ` t ) ) = (/) ) ) ) | 
						
							| 9 |  | 0in |  |-  ( (/) i^i t ) = (/) | 
						
							| 10 |  | pm5.5 |  |-  ( ( (/) i^i t ) = (/) -> ( ( ( (/) i^i t ) = (/) -> ( ( I ` (/) ) i^i ( I ` t ) ) = (/) ) <-> ( ( I ` (/) ) i^i ( I ` t ) ) = (/) ) ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( ( ( (/) i^i t ) = (/) -> ( ( I ` (/) ) i^i ( I ` t ) ) = (/) ) <-> ( ( I ` (/) ) i^i ( I ` t ) ) = (/) ) | 
						
							| 12 | 8 11 | bitrdi |  |-  ( s = (/) -> ( ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) <-> ( ( I ` (/) ) i^i ( I ` t ) ) = (/) ) ) | 
						
							| 13 |  | fveq2 |  |-  ( t = (/) -> ( I ` t ) = ( I ` (/) ) ) | 
						
							| 14 | 13 | ineq2d |  |-  ( t = (/) -> ( ( I ` (/) ) i^i ( I ` t ) ) = ( ( I ` (/) ) i^i ( I ` (/) ) ) ) | 
						
							| 15 | 14 | eqeq1d |  |-  ( t = (/) -> ( ( ( I ` (/) ) i^i ( I ` t ) ) = (/) <-> ( ( I ` (/) ) i^i ( I ` (/) ) ) = (/) ) ) | 
						
							| 16 | 12 15 | rspc2v |  |-  ( ( (/) e. ~P B /\ (/) e. ~P B ) -> ( A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) -> ( ( I ` (/) ) i^i ( I ` (/) ) ) = (/) ) ) | 
						
							| 17 | 2 2 16 | mp2an |  |-  ( A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) -> ( ( I ` (/) ) i^i ( I ` (/) ) ) = (/) ) | 
						
							| 18 | 1 17 | eqtr3id |  |-  ( A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) -> ( I ` (/) ) = (/) ) |