Step |
Hyp |
Ref |
Expression |
1 |
|
pwidg |
|- ( B e. V -> B e. ~P B ) |
2 |
1
|
ad2antrr |
|- ( ( ( B e. V /\ I e. ( ~P B ^m ~P B ) ) /\ ( ( I ` B ) = B /\ A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) ) -> B e. ~P B ) |
3 |
|
0elpw |
|- (/) e. ~P B |
4 |
3
|
a1i |
|- ( ( ( B e. V /\ I e. ( ~P B ^m ~P B ) ) /\ ( ( I ` B ) = B /\ A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) ) -> (/) e. ~P B ) |
5 |
|
simprr |
|- ( ( ( B e. V /\ I e. ( ~P B ^m ~P B ) ) /\ ( ( I ` B ) = B /\ A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) ) -> A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) |
6 |
|
ineq1 |
|- ( s = B -> ( s i^i t ) = ( B i^i t ) ) |
7 |
6
|
eqeq1d |
|- ( s = B -> ( ( s i^i t ) = (/) <-> ( B i^i t ) = (/) ) ) |
8 |
|
fveq2 |
|- ( s = B -> ( I ` s ) = ( I ` B ) ) |
9 |
8
|
ineq1d |
|- ( s = B -> ( ( I ` s ) i^i ( I ` t ) ) = ( ( I ` B ) i^i ( I ` t ) ) ) |
10 |
9
|
eqeq1d |
|- ( s = B -> ( ( ( I ` s ) i^i ( I ` t ) ) = (/) <-> ( ( I ` B ) i^i ( I ` t ) ) = (/) ) ) |
11 |
7 10
|
imbi12d |
|- ( s = B -> ( ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) <-> ( ( B i^i t ) = (/) -> ( ( I ` B ) i^i ( I ` t ) ) = (/) ) ) ) |
12 |
|
ineq2 |
|- ( t = (/) -> ( B i^i t ) = ( B i^i (/) ) ) |
13 |
12
|
eqeq1d |
|- ( t = (/) -> ( ( B i^i t ) = (/) <-> ( B i^i (/) ) = (/) ) ) |
14 |
|
fveq2 |
|- ( t = (/) -> ( I ` t ) = ( I ` (/) ) ) |
15 |
14
|
ineq2d |
|- ( t = (/) -> ( ( I ` B ) i^i ( I ` t ) ) = ( ( I ` B ) i^i ( I ` (/) ) ) ) |
16 |
15
|
eqeq1d |
|- ( t = (/) -> ( ( ( I ` B ) i^i ( I ` t ) ) = (/) <-> ( ( I ` B ) i^i ( I ` (/) ) ) = (/) ) ) |
17 |
13 16
|
imbi12d |
|- ( t = (/) -> ( ( ( B i^i t ) = (/) -> ( ( I ` B ) i^i ( I ` t ) ) = (/) ) <-> ( ( B i^i (/) ) = (/) -> ( ( I ` B ) i^i ( I ` (/) ) ) = (/) ) ) ) |
18 |
|
in0 |
|- ( B i^i (/) ) = (/) |
19 |
|
pm5.5 |
|- ( ( B i^i (/) ) = (/) -> ( ( ( B i^i (/) ) = (/) -> ( ( I ` B ) i^i ( I ` (/) ) ) = (/) ) <-> ( ( I ` B ) i^i ( I ` (/) ) ) = (/) ) ) |
20 |
18 19
|
mp1i |
|- ( t = (/) -> ( ( ( B i^i (/) ) = (/) -> ( ( I ` B ) i^i ( I ` (/) ) ) = (/) ) <-> ( ( I ` B ) i^i ( I ` (/) ) ) = (/) ) ) |
21 |
17 20
|
bitrd |
|- ( t = (/) -> ( ( ( B i^i t ) = (/) -> ( ( I ` B ) i^i ( I ` t ) ) = (/) ) <-> ( ( I ` B ) i^i ( I ` (/) ) ) = (/) ) ) |
22 |
11 21
|
rspc2va |
|- ( ( ( B e. ~P B /\ (/) e. ~P B ) /\ A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) -> ( ( I ` B ) i^i ( I ` (/) ) ) = (/) ) |
23 |
2 4 5 22
|
syl21anc |
|- ( ( ( B e. V /\ I e. ( ~P B ^m ~P B ) ) /\ ( ( I ` B ) = B /\ A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) ) -> ( ( I ` B ) i^i ( I ` (/) ) ) = (/) ) |
24 |
23
|
ex |
|- ( ( B e. V /\ I e. ( ~P B ^m ~P B ) ) -> ( ( ( I ` B ) = B /\ A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) -> ( ( I ` B ) i^i ( I ` (/) ) ) = (/) ) ) |
25 |
|
elmapi |
|- ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B ) |
26 |
25
|
adantl |
|- ( ( B e. V /\ I e. ( ~P B ^m ~P B ) ) -> I : ~P B --> ~P B ) |
27 |
3
|
a1i |
|- ( ( B e. V /\ I e. ( ~P B ^m ~P B ) ) -> (/) e. ~P B ) |
28 |
26 27
|
ffvelrnd |
|- ( ( B e. V /\ I e. ( ~P B ^m ~P B ) ) -> ( I ` (/) ) e. ~P B ) |
29 |
28
|
elpwid |
|- ( ( B e. V /\ I e. ( ~P B ^m ~P B ) ) -> ( I ` (/) ) C_ B ) |
30 |
|
simpl |
|- ( ( ( I ` B ) = B /\ A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) -> ( I ` B ) = B ) |
31 |
|
ineq1 |
|- ( ( I ` B ) = B -> ( ( I ` B ) i^i ( I ` (/) ) ) = ( B i^i ( I ` (/) ) ) ) |
32 |
|
incom |
|- ( B i^i ( I ` (/) ) ) = ( ( I ` (/) ) i^i B ) |
33 |
31 32
|
eqtrdi |
|- ( ( I ` B ) = B -> ( ( I ` B ) i^i ( I ` (/) ) ) = ( ( I ` (/) ) i^i B ) ) |
34 |
33
|
eqeq1d |
|- ( ( I ` B ) = B -> ( ( ( I ` B ) i^i ( I ` (/) ) ) = (/) <-> ( ( I ` (/) ) i^i B ) = (/) ) ) |
35 |
34
|
biimpd |
|- ( ( I ` B ) = B -> ( ( ( I ` B ) i^i ( I ` (/) ) ) = (/) -> ( ( I ` (/) ) i^i B ) = (/) ) ) |
36 |
|
reldisj |
|- ( ( I ` (/) ) C_ B -> ( ( ( I ` (/) ) i^i B ) = (/) <-> ( I ` (/) ) C_ ( B \ B ) ) ) |
37 |
36
|
biimpd |
|- ( ( I ` (/) ) C_ B -> ( ( ( I ` (/) ) i^i B ) = (/) -> ( I ` (/) ) C_ ( B \ B ) ) ) |
38 |
|
difid |
|- ( B \ B ) = (/) |
39 |
38
|
sseq2i |
|- ( ( I ` (/) ) C_ ( B \ B ) <-> ( I ` (/) ) C_ (/) ) |
40 |
|
ss0 |
|- ( ( I ` (/) ) C_ (/) -> ( I ` (/) ) = (/) ) |
41 |
39 40
|
sylbi |
|- ( ( I ` (/) ) C_ ( B \ B ) -> ( I ` (/) ) = (/) ) |
42 |
37 41
|
syl6com |
|- ( ( ( I ` (/) ) i^i B ) = (/) -> ( ( I ` (/) ) C_ B -> ( I ` (/) ) = (/) ) ) |
43 |
35 42
|
syl6com |
|- ( ( ( I ` B ) i^i ( I ` (/) ) ) = (/) -> ( ( I ` B ) = B -> ( ( I ` (/) ) C_ B -> ( I ` (/) ) = (/) ) ) ) |
44 |
43
|
com13 |
|- ( ( I ` (/) ) C_ B -> ( ( I ` B ) = B -> ( ( ( I ` B ) i^i ( I ` (/) ) ) = (/) -> ( I ` (/) ) = (/) ) ) ) |
45 |
29 30 44
|
syl2im |
|- ( ( B e. V /\ I e. ( ~P B ^m ~P B ) ) -> ( ( ( I ` B ) = B /\ A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) -> ( ( ( I ` B ) i^i ( I ` (/) ) ) = (/) -> ( I ` (/) ) = (/) ) ) ) |
46 |
24 45
|
mpdd |
|- ( ( B e. V /\ I e. ( ~P B ^m ~P B ) ) -> ( ( ( I ` B ) = B /\ A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) ) -> ( I ` (/) ) = (/) ) ) |