Metamath Proof Explorer


Theorem ntrk0kbimka

Description: If the interiors of disjoint sets are disjoint and the interior of the base set is the base set, then the interior of the empty set is the empty set. Obsolete version of ntrkbimka . (Contributed by RP, 12-Jun-2021)

Ref Expression
Assertion ntrk0kbimka ( ( 𝐵𝑉𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) → ( ( ( 𝐼𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ) → ( 𝐼 ‘ ∅ ) = ∅ ) )

Proof

Step Hyp Ref Expression
1 pwidg ( 𝐵𝑉𝐵 ∈ 𝒫 𝐵 )
2 1 ad2antrr ( ( ( 𝐵𝑉𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) ∧ ( ( 𝐼𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ) ) → 𝐵 ∈ 𝒫 𝐵 )
3 0elpw ∅ ∈ 𝒫 𝐵
4 3 a1i ( ( ( 𝐵𝑉𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) ∧ ( ( 𝐼𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ) ) → ∅ ∈ 𝒫 𝐵 )
5 simprr ( ( ( 𝐵𝑉𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) ∧ ( ( 𝐼𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ) ) → ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) )
6 ineq1 ( 𝑠 = 𝐵 → ( 𝑠𝑡 ) = ( 𝐵𝑡 ) )
7 6 eqeq1d ( 𝑠 = 𝐵 → ( ( 𝑠𝑡 ) = ∅ ↔ ( 𝐵𝑡 ) = ∅ ) )
8 fveq2 ( 𝑠 = 𝐵 → ( 𝐼𝑠 ) = ( 𝐼𝐵 ) )
9 8 ineq1d ( 𝑠 = 𝐵 → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ( ( 𝐼𝐵 ) ∩ ( 𝐼𝑡 ) ) )
10 9 eqeq1d ( 𝑠 = 𝐵 → ( ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ↔ ( ( 𝐼𝐵 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) )
11 7 10 imbi12d ( 𝑠 = 𝐵 → ( ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ↔ ( ( 𝐵𝑡 ) = ∅ → ( ( 𝐼𝐵 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ) )
12 ineq2 ( 𝑡 = ∅ → ( 𝐵𝑡 ) = ( 𝐵 ∩ ∅ ) )
13 12 eqeq1d ( 𝑡 = ∅ → ( ( 𝐵𝑡 ) = ∅ ↔ ( 𝐵 ∩ ∅ ) = ∅ ) )
14 fveq2 ( 𝑡 = ∅ → ( 𝐼𝑡 ) = ( 𝐼 ‘ ∅ ) )
15 14 ineq2d ( 𝑡 = ∅ → ( ( 𝐼𝐵 ) ∩ ( 𝐼𝑡 ) ) = ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) )
16 15 eqeq1d ( 𝑡 = ∅ → ( ( ( 𝐼𝐵 ) ∩ ( 𝐼𝑡 ) ) = ∅ ↔ ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) )
17 13 16 imbi12d ( 𝑡 = ∅ → ( ( ( 𝐵𝑡 ) = ∅ → ( ( 𝐼𝐵 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ↔ ( ( 𝐵 ∩ ∅ ) = ∅ → ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) ) )
18 in0 ( 𝐵 ∩ ∅ ) = ∅
19 pm5.5 ( ( 𝐵 ∩ ∅ ) = ∅ → ( ( ( 𝐵 ∩ ∅ ) = ∅ → ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) ↔ ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) )
20 18 19 mp1i ( 𝑡 = ∅ → ( ( ( 𝐵 ∩ ∅ ) = ∅ → ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) ↔ ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) )
21 17 20 bitrd ( 𝑡 = ∅ → ( ( ( 𝐵𝑡 ) = ∅ → ( ( 𝐼𝐵 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ↔ ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) )
22 11 21 rspc2va ( ( ( 𝐵 ∈ 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ) → ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ )
23 2 4 5 22 syl21anc ( ( ( 𝐵𝑉𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) ∧ ( ( 𝐼𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ) ) → ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ )
24 23 ex ( ( 𝐵𝑉𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) → ( ( ( 𝐼𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ) → ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) )
25 elmapi ( 𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
26 25 adantl ( ( 𝐵𝑉𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
27 3 a1i ( ( 𝐵𝑉𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) → ∅ ∈ 𝒫 𝐵 )
28 26 27 ffvelrnd ( ( 𝐵𝑉𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) → ( 𝐼 ‘ ∅ ) ∈ 𝒫 𝐵 )
29 28 elpwid ( ( 𝐵𝑉𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) → ( 𝐼 ‘ ∅ ) ⊆ 𝐵 )
30 simpl ( ( ( 𝐼𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ) → ( 𝐼𝐵 ) = 𝐵 )
31 ineq1 ( ( 𝐼𝐵 ) = 𝐵 → ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ( 𝐵 ∩ ( 𝐼 ‘ ∅ ) ) )
32 incom ( 𝐵 ∩ ( 𝐼 ‘ ∅ ) ) = ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 )
33 31 32 eqtrdi ( ( 𝐼𝐵 ) = 𝐵 → ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) )
34 33 eqeq1d ( ( 𝐼𝐵 ) = 𝐵 → ( ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ↔ ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ ) )
35 34 biimpd ( ( 𝐼𝐵 ) = 𝐵 → ( ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ → ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ ) )
36 reldisj ( ( 𝐼 ‘ ∅ ) ⊆ 𝐵 → ( ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ ↔ ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵𝐵 ) ) )
37 36 biimpd ( ( 𝐼 ‘ ∅ ) ⊆ 𝐵 → ( ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ → ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵𝐵 ) ) )
38 difid ( 𝐵𝐵 ) = ∅
39 38 sseq2i ( ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵𝐵 ) ↔ ( 𝐼 ‘ ∅ ) ⊆ ∅ )
40 ss0 ( ( 𝐼 ‘ ∅ ) ⊆ ∅ → ( 𝐼 ‘ ∅ ) = ∅ )
41 39 40 sylbi ( ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵𝐵 ) → ( 𝐼 ‘ ∅ ) = ∅ )
42 37 41 syl6com ( ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ → ( ( 𝐼 ‘ ∅ ) ⊆ 𝐵 → ( 𝐼 ‘ ∅ ) = ∅ ) )
43 35 42 syl6com ( ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ → ( ( 𝐼𝐵 ) = 𝐵 → ( ( 𝐼 ‘ ∅ ) ⊆ 𝐵 → ( 𝐼 ‘ ∅ ) = ∅ ) ) )
44 43 com13 ( ( 𝐼 ‘ ∅ ) ⊆ 𝐵 → ( ( 𝐼𝐵 ) = 𝐵 → ( ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ → ( 𝐼 ‘ ∅ ) = ∅ ) ) )
45 29 30 44 syl2im ( ( 𝐵𝑉𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) → ( ( ( 𝐼𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ) → ( ( ( 𝐼𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ → ( 𝐼 ‘ ∅ ) = ∅ ) ) )
46 24 45 mpdd ( ( 𝐵𝑉𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) → ( ( ( 𝐼𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ) → ( 𝐼 ‘ ∅ ) = ∅ ) )