| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwidg | ⊢ ( 𝐵  ∈  𝑉  →  𝐵  ∈  𝒫  𝐵 ) | 
						
							| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  ∧  ( ( 𝐼 ‘ 𝐵 )  =  𝐵  ∧  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) ) )  →  𝐵  ∈  𝒫  𝐵 ) | 
						
							| 3 |  | 0elpw | ⊢ ∅  ∈  𝒫  𝐵 | 
						
							| 4 | 3 | a1i | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  ∧  ( ( 𝐼 ‘ 𝐵 )  =  𝐵  ∧  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) ) )  →  ∅  ∈  𝒫  𝐵 ) | 
						
							| 5 |  | simprr | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  ∧  ( ( 𝐼 ‘ 𝐵 )  =  𝐵  ∧  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) ) )  →  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) ) | 
						
							| 6 |  | ineq1 | ⊢ ( 𝑠  =  𝐵  →  ( 𝑠  ∩  𝑡 )  =  ( 𝐵  ∩  𝑡 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑠  =  𝐵  →  ( ( 𝑠  ∩  𝑡 )  =  ∅  ↔  ( 𝐵  ∩  𝑡 )  =  ∅ ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑠  =  𝐵  →  ( 𝐼 ‘ 𝑠 )  =  ( 𝐼 ‘ 𝐵 ) ) | 
						
							| 9 | 8 | ineq1d | ⊢ ( 𝑠  =  𝐵  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ 𝑡 ) ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑠  =  𝐵  →  ( ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅  ↔  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) ) | 
						
							| 11 | 7 10 | imbi12d | ⊢ ( 𝑠  =  𝐵  →  ( ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ )  ↔  ( ( 𝐵  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) ) ) | 
						
							| 12 |  | ineq2 | ⊢ ( 𝑡  =  ∅  →  ( 𝐵  ∩  𝑡 )  =  ( 𝐵  ∩  ∅ ) ) | 
						
							| 13 | 12 | eqeq1d | ⊢ ( 𝑡  =  ∅  →  ( ( 𝐵  ∩  𝑡 )  =  ∅  ↔  ( 𝐵  ∩  ∅ )  =  ∅ ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑡  =  ∅  →  ( 𝐼 ‘ 𝑡 )  =  ( 𝐼 ‘ ∅ ) ) | 
						
							| 15 | 14 | ineq2d | ⊢ ( 𝑡  =  ∅  →  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) ) ) | 
						
							| 16 | 15 | eqeq1d | ⊢ ( 𝑡  =  ∅  →  ( ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅  ↔  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ∅ ) ) | 
						
							| 17 | 13 16 | imbi12d | ⊢ ( 𝑡  =  ∅  →  ( ( ( 𝐵  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ )  ↔  ( ( 𝐵  ∩  ∅ )  =  ∅  →  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ∅ ) ) ) | 
						
							| 18 |  | in0 | ⊢ ( 𝐵  ∩  ∅ )  =  ∅ | 
						
							| 19 |  | pm5.5 | ⊢ ( ( 𝐵  ∩  ∅ )  =  ∅  →  ( ( ( 𝐵  ∩  ∅ )  =  ∅  →  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ∅ )  ↔  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ∅ ) ) | 
						
							| 20 | 18 19 | mp1i | ⊢ ( 𝑡  =  ∅  →  ( ( ( 𝐵  ∩  ∅ )  =  ∅  →  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ∅ )  ↔  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ∅ ) ) | 
						
							| 21 | 17 20 | bitrd | ⊢ ( 𝑡  =  ∅  →  ( ( ( 𝐵  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ )  ↔  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ∅ ) ) | 
						
							| 22 | 11 21 | rspc2va | ⊢ ( ( ( 𝐵  ∈  𝒫  𝐵  ∧  ∅  ∈  𝒫  𝐵 )  ∧  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) )  →  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ∅ ) | 
						
							| 23 | 2 4 5 22 | syl21anc | ⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  ∧  ( ( 𝐼 ‘ 𝐵 )  =  𝐵  ∧  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) ) )  →  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ∅ ) | 
						
							| 24 | 23 | ex | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  →  ( ( ( 𝐼 ‘ 𝐵 )  =  𝐵  ∧  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) )  →  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ∅ ) ) | 
						
							| 25 |  | elmapi | ⊢ ( 𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 27 | 3 | a1i | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  →  ∅  ∈  𝒫  𝐵 ) | 
						
							| 28 | 26 27 | ffvelcdmd | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  →  ( 𝐼 ‘ ∅ )  ∈  𝒫  𝐵 ) | 
						
							| 29 | 28 | elpwid | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  →  ( 𝐼 ‘ ∅ )  ⊆  𝐵 ) | 
						
							| 30 |  | simpl | ⊢ ( ( ( 𝐼 ‘ 𝐵 )  =  𝐵  ∧  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) )  →  ( 𝐼 ‘ 𝐵 )  =  𝐵 ) | 
						
							| 31 |  | ineq1 | ⊢ ( ( 𝐼 ‘ 𝐵 )  =  𝐵  →  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ( 𝐵  ∩  ( 𝐼 ‘ ∅ ) ) ) | 
						
							| 32 |  | incom | ⊢ ( 𝐵  ∩  ( 𝐼 ‘ ∅ ) )  =  ( ( 𝐼 ‘ ∅ )  ∩  𝐵 ) | 
						
							| 33 | 31 32 | eqtrdi | ⊢ ( ( 𝐼 ‘ 𝐵 )  =  𝐵  →  ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ( ( 𝐼 ‘ ∅ )  ∩  𝐵 ) ) | 
						
							| 34 | 33 | eqeq1d | ⊢ ( ( 𝐼 ‘ 𝐵 )  =  𝐵  →  ( ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ∅  ↔  ( ( 𝐼 ‘ ∅ )  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 35 | 34 | biimpd | ⊢ ( ( 𝐼 ‘ 𝐵 )  =  𝐵  →  ( ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ∅  →  ( ( 𝐼 ‘ ∅ )  ∩  𝐵 )  =  ∅ ) ) | 
						
							| 36 |  | reldisj | ⊢ ( ( 𝐼 ‘ ∅ )  ⊆  𝐵  →  ( ( ( 𝐼 ‘ ∅ )  ∩  𝐵 )  =  ∅  ↔  ( 𝐼 ‘ ∅ )  ⊆  ( 𝐵  ∖  𝐵 ) ) ) | 
						
							| 37 | 36 | biimpd | ⊢ ( ( 𝐼 ‘ ∅ )  ⊆  𝐵  →  ( ( ( 𝐼 ‘ ∅ )  ∩  𝐵 )  =  ∅  →  ( 𝐼 ‘ ∅ )  ⊆  ( 𝐵  ∖  𝐵 ) ) ) | 
						
							| 38 |  | difid | ⊢ ( 𝐵  ∖  𝐵 )  =  ∅ | 
						
							| 39 | 38 | sseq2i | ⊢ ( ( 𝐼 ‘ ∅ )  ⊆  ( 𝐵  ∖  𝐵 )  ↔  ( 𝐼 ‘ ∅ )  ⊆  ∅ ) | 
						
							| 40 |  | ss0 | ⊢ ( ( 𝐼 ‘ ∅ )  ⊆  ∅  →  ( 𝐼 ‘ ∅ )  =  ∅ ) | 
						
							| 41 | 39 40 | sylbi | ⊢ ( ( 𝐼 ‘ ∅ )  ⊆  ( 𝐵  ∖  𝐵 )  →  ( 𝐼 ‘ ∅ )  =  ∅ ) | 
						
							| 42 | 37 41 | syl6com | ⊢ ( ( ( 𝐼 ‘ ∅ )  ∩  𝐵 )  =  ∅  →  ( ( 𝐼 ‘ ∅ )  ⊆  𝐵  →  ( 𝐼 ‘ ∅ )  =  ∅ ) ) | 
						
							| 43 | 35 42 | syl6com | ⊢ ( ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ∅  →  ( ( 𝐼 ‘ 𝐵 )  =  𝐵  →  ( ( 𝐼 ‘ ∅ )  ⊆  𝐵  →  ( 𝐼 ‘ ∅ )  =  ∅ ) ) ) | 
						
							| 44 | 43 | com13 | ⊢ ( ( 𝐼 ‘ ∅ )  ⊆  𝐵  →  ( ( 𝐼 ‘ 𝐵 )  =  𝐵  →  ( ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ∅  →  ( 𝐼 ‘ ∅ )  =  ∅ ) ) ) | 
						
							| 45 | 29 30 44 | syl2im | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  →  ( ( ( 𝐼 ‘ 𝐵 )  =  𝐵  ∧  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) )  →  ( ( ( 𝐼 ‘ 𝐵 )  ∩  ( 𝐼 ‘ ∅ ) )  =  ∅  →  ( 𝐼 ‘ ∅ )  =  ∅ ) ) ) | 
						
							| 46 | 24 45 | mpdd | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  →  ( ( ( 𝐼 ‘ 𝐵 )  =  𝐵  ∧  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) )  →  ( 𝐼 ‘ ∅ )  =  ∅ ) ) |