Step |
Hyp |
Ref |
Expression |
1 |
|
pwidg |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ 𝒫 𝐵 ) |
2 |
1
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( ( 𝐼 ‘ 𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) ) → 𝐵 ∈ 𝒫 𝐵 ) |
3 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐵 |
4 |
3
|
a1i |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( ( 𝐼 ‘ 𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) ) → ∅ ∈ 𝒫 𝐵 ) |
5 |
|
simprr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( ( 𝐼 ‘ 𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) ) → ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) |
6 |
|
ineq1 |
⊢ ( 𝑠 = 𝐵 → ( 𝑠 ∩ 𝑡 ) = ( 𝐵 ∩ 𝑡 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑠 = 𝐵 → ( ( 𝑠 ∩ 𝑡 ) = ∅ ↔ ( 𝐵 ∩ 𝑡 ) = ∅ ) ) |
8 |
|
fveq2 |
⊢ ( 𝑠 = 𝐵 → ( 𝐼 ‘ 𝑠 ) = ( 𝐼 ‘ 𝐵 ) ) |
9 |
8
|
ineq1d |
⊢ ( 𝑠 = 𝐵 → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑠 = 𝐵 → ( ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ↔ ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) |
11 |
7 10
|
imbi12d |
⊢ ( 𝑠 = 𝐵 → ( ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ↔ ( ( 𝐵 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) ) |
12 |
|
ineq2 |
⊢ ( 𝑡 = ∅ → ( 𝐵 ∩ 𝑡 ) = ( 𝐵 ∩ ∅ ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑡 = ∅ → ( ( 𝐵 ∩ 𝑡 ) = ∅ ↔ ( 𝐵 ∩ ∅ ) = ∅ ) ) |
14 |
|
fveq2 |
⊢ ( 𝑡 = ∅ → ( 𝐼 ‘ 𝑡 ) = ( 𝐼 ‘ ∅ ) ) |
15 |
14
|
ineq2d |
⊢ ( 𝑡 = ∅ → ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑡 = ∅ → ( ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ↔ ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) ) |
17 |
13 16
|
imbi12d |
⊢ ( 𝑡 = ∅ → ( ( ( 𝐵 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ↔ ( ( 𝐵 ∩ ∅ ) = ∅ → ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) ) ) |
18 |
|
in0 |
⊢ ( 𝐵 ∩ ∅ ) = ∅ |
19 |
|
pm5.5 |
⊢ ( ( 𝐵 ∩ ∅ ) = ∅ → ( ( ( 𝐵 ∩ ∅ ) = ∅ → ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) ↔ ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) ) |
20 |
18 19
|
mp1i |
⊢ ( 𝑡 = ∅ → ( ( ( 𝐵 ∩ ∅ ) = ∅ → ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) ↔ ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) ) |
21 |
17 20
|
bitrd |
⊢ ( 𝑡 = ∅ → ( ( ( 𝐵 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ↔ ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) ) |
22 |
11 21
|
rspc2va |
⊢ ( ( ( 𝐵 ∈ 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵 ) ∧ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) → ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) |
23 |
2 4 5 22
|
syl21anc |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( ( 𝐼 ‘ 𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) ) → ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) |
24 |
23
|
ex |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → ( ( ( 𝐼 ‘ 𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) → ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ) ) |
25 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
26 |
25
|
adantl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
27 |
3
|
a1i |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → ∅ ∈ 𝒫 𝐵 ) |
28 |
26 27
|
ffvelrnd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → ( 𝐼 ‘ ∅ ) ∈ 𝒫 𝐵 ) |
29 |
28
|
elpwid |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → ( 𝐼 ‘ ∅ ) ⊆ 𝐵 ) |
30 |
|
simpl |
⊢ ( ( ( 𝐼 ‘ 𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) → ( 𝐼 ‘ 𝐵 ) = 𝐵 ) |
31 |
|
ineq1 |
⊢ ( ( 𝐼 ‘ 𝐵 ) = 𝐵 → ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ( 𝐵 ∩ ( 𝐼 ‘ ∅ ) ) ) |
32 |
|
incom |
⊢ ( 𝐵 ∩ ( 𝐼 ‘ ∅ ) ) = ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) |
33 |
31 32
|
eqtrdi |
⊢ ( ( 𝐼 ‘ 𝐵 ) = 𝐵 → ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) ) |
34 |
33
|
eqeq1d |
⊢ ( ( 𝐼 ‘ 𝐵 ) = 𝐵 → ( ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ ↔ ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ ) ) |
35 |
34
|
biimpd |
⊢ ( ( 𝐼 ‘ 𝐵 ) = 𝐵 → ( ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ → ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ ) ) |
36 |
|
reldisj |
⊢ ( ( 𝐼 ‘ ∅ ) ⊆ 𝐵 → ( ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ ↔ ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵 ∖ 𝐵 ) ) ) |
37 |
36
|
biimpd |
⊢ ( ( 𝐼 ‘ ∅ ) ⊆ 𝐵 → ( ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ → ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵 ∖ 𝐵 ) ) ) |
38 |
|
difid |
⊢ ( 𝐵 ∖ 𝐵 ) = ∅ |
39 |
38
|
sseq2i |
⊢ ( ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵 ∖ 𝐵 ) ↔ ( 𝐼 ‘ ∅ ) ⊆ ∅ ) |
40 |
|
ss0 |
⊢ ( ( 𝐼 ‘ ∅ ) ⊆ ∅ → ( 𝐼 ‘ ∅ ) = ∅ ) |
41 |
39 40
|
sylbi |
⊢ ( ( 𝐼 ‘ ∅ ) ⊆ ( 𝐵 ∖ 𝐵 ) → ( 𝐼 ‘ ∅ ) = ∅ ) |
42 |
37 41
|
syl6com |
⊢ ( ( ( 𝐼 ‘ ∅ ) ∩ 𝐵 ) = ∅ → ( ( 𝐼 ‘ ∅ ) ⊆ 𝐵 → ( 𝐼 ‘ ∅ ) = ∅ ) ) |
43 |
35 42
|
syl6com |
⊢ ( ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ → ( ( 𝐼 ‘ 𝐵 ) = 𝐵 → ( ( 𝐼 ‘ ∅ ) ⊆ 𝐵 → ( 𝐼 ‘ ∅ ) = ∅ ) ) ) |
44 |
43
|
com13 |
⊢ ( ( 𝐼 ‘ ∅ ) ⊆ 𝐵 → ( ( 𝐼 ‘ 𝐵 ) = 𝐵 → ( ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ → ( 𝐼 ‘ ∅ ) = ∅ ) ) ) |
45 |
29 30 44
|
syl2im |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → ( ( ( 𝐼 ‘ 𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) → ( ( ( 𝐼 ‘ 𝐵 ) ∩ ( 𝐼 ‘ ∅ ) ) = ∅ → ( 𝐼 ‘ ∅ ) = ∅ ) ) ) |
46 |
24 45
|
mpdd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → ( ( ( 𝐼 ‘ 𝐵 ) = 𝐵 ∧ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠 ∩ 𝑡 ) = ∅ → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ∅ ) ) → ( 𝐼 ‘ ∅ ) = ∅ ) ) |