| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 2 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 3 |  | nelsn | ⊢ ( 1o  ≠  ∅  →  ¬  1o  ∈  { ∅ } ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ¬  1o  ∈  { ∅ } | 
						
							| 5 |  | eldif | ⊢ ( 1o  ∈  ( V  ∖  { ∅ } )  ↔  ( 1o  ∈  V  ∧  ¬  1o  ∈  { ∅ } ) ) | 
						
							| 6 |  | ne0i | ⊢ ( 1o  ∈  ( V  ∖  { ∅ } )  →  ( V  ∖  { ∅ } )  ≠  ∅ ) | 
						
							| 7 | 5 6 | sylbir | ⊢ ( ( 1o  ∈  V  ∧  ¬  1o  ∈  { ∅ } )  →  ( V  ∖  { ∅ } )  ≠  ∅ ) | 
						
							| 8 | 1 4 7 | mp2an | ⊢ ( V  ∖  { ∅ } )  ≠  ∅ | 
						
							| 9 |  | r19.2zb | ⊢ ( ( V  ∖  { ∅ } )  ≠  ∅  ↔  ( ∀ 𝑏  ∈  ( V  ∖  { ∅ } ) ∃ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) )  →  ∃ 𝑏  ∈  ( V  ∖  { ∅ } ) ∃ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) ) ) ) | 
						
							| 10 | 8 9 | mpbi | ⊢ ( ∀ 𝑏  ∈  ( V  ∖  { ∅ } ) ∃ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) )  →  ∃ 𝑏  ∈  ( V  ∖  { ∅ } ) ∃ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) ) ) | 
						
							| 11 |  | rexex | ⊢ ( ∃ 𝑏  ∈  ( V  ∖  { ∅ } ) ∃ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) )  →  ∃ 𝑏 ∃ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) ) ) | 
						
							| 12 |  | rexanali | ⊢ ( ∃ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) )  ↔  ¬  ∀ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  →  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) ) ) | 
						
							| 13 | 12 | exbii | ⊢ ( ∃ 𝑏 ∃ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) )  ↔  ∃ 𝑏 ¬  ∀ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  →  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) ) ) | 
						
							| 14 |  | exnal | ⊢ ( ∃ 𝑏 ¬  ∀ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  →  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) )  ↔  ¬  ∀ 𝑏 ∀ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  →  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) ) ) | 
						
							| 15 | 13 14 | sylbb | ⊢ ( ∃ 𝑏 ∃ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) )  →  ¬  ∀ 𝑏 ∀ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  →  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) ) ) | 
						
							| 16 | 10 11 15 | 3syl | ⊢ ( ∀ 𝑏  ∈  ( V  ∖  { ∅ } ) ∃ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) )  →  ¬  ∀ 𝑏 ∀ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  →  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) ) ) | 
						
							| 17 |  | difelpw | ⊢ ( 𝑏  ∈  ( V  ∖  { ∅ } )  →  ( 𝑏  ∖  𝑥 )  ∈  𝒫  𝑏 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑥  ∈  𝒫  𝑏 )  →  ( 𝑏  ∖  𝑥 )  ∈  𝒫  𝑏 ) | 
						
							| 19 | 18 | fmpttd | ⊢ ( 𝑏  ∈  ( V  ∖  { ∅ } )  →  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) : 𝒫  𝑏 ⟶ 𝒫  𝑏 ) | 
						
							| 20 |  | pwexg | ⊢ ( 𝑏  ∈  ( V  ∖  { ∅ } )  →  𝒫  𝑏  ∈  V ) | 
						
							| 21 | 20 20 | elmapd | ⊢ ( 𝑏  ∈  ( V  ∖  { ∅ } )  →  ( ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) )  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 )  ↔  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) : 𝒫  𝑏 ⟶ 𝒫  𝑏 ) ) | 
						
							| 22 | 19 21 | mpbird | ⊢ ( 𝑏  ∈  ( V  ∖  { ∅ } )  →  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) )  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ) | 
						
							| 23 |  | simpllr | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) ) | 
						
							| 24 |  | difeq2 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑏  ∖  𝑥 )  =  ( 𝑏  ∖  𝑧 ) ) | 
						
							| 25 | 24 | cbvmptv | ⊢ ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) )  =  ( 𝑧  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑧 ) ) | 
						
							| 26 | 23 25 | eqtrdi | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  𝑘  =  ( 𝑧  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑧 ) ) ) | 
						
							| 27 |  | difeq2 | ⊢ ( 𝑧  =  ( 𝑠  ∪  𝑡 )  →  ( 𝑏  ∖  𝑧 )  =  ( 𝑏  ∖  ( 𝑠  ∪  𝑡 ) ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  ∧  𝑧  =  ( 𝑠  ∪  𝑡 ) )  →  ( 𝑏  ∖  𝑧 )  =  ( 𝑏  ∖  ( 𝑠  ∪  𝑡 ) ) ) | 
						
							| 29 |  | simplll | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  𝑏  ∈  ( V  ∖  { ∅ } ) ) | 
						
							| 30 |  | simplr | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  𝑠  ∈  𝒫  𝑏 ) | 
						
							| 31 | 30 | elpwid | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  𝑠  ⊆  𝑏 ) | 
						
							| 32 |  | simpr | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  𝑡  ∈  𝒫  𝑏 ) | 
						
							| 33 | 32 | elpwid | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  𝑡  ⊆  𝑏 ) | 
						
							| 34 | 31 33 | unssd | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  ( 𝑠  ∪  𝑡 )  ⊆  𝑏 ) | 
						
							| 35 | 29 34 | sselpwd | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  ( 𝑠  ∪  𝑡 )  ∈  𝒫  𝑏 ) | 
						
							| 36 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 37 | 36 | difexi | ⊢ ( 𝑏  ∖  ( 𝑠  ∪  𝑡 ) )  ∈  V | 
						
							| 38 | 37 | a1i | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  ( 𝑏  ∖  ( 𝑠  ∪  𝑡 ) )  ∈  V ) | 
						
							| 39 | 26 28 35 38 | fvmptd | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  =  ( 𝑏  ∖  ( 𝑠  ∪  𝑡 ) ) ) | 
						
							| 40 |  | difeq2 | ⊢ ( 𝑧  =  𝑠  →  ( 𝑏  ∖  𝑧 )  =  ( 𝑏  ∖  𝑠 ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  ∧  𝑧  =  𝑠 )  →  ( 𝑏  ∖  𝑧 )  =  ( 𝑏  ∖  𝑠 ) ) | 
						
							| 42 | 36 | difexi | ⊢ ( 𝑏  ∖  𝑠 )  ∈  V | 
						
							| 43 | 42 | a1i | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  ( 𝑏  ∖  𝑠 )  ∈  V ) | 
						
							| 44 | 26 41 30 43 | fvmptd | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  ( 𝑘 ‘ 𝑠 )  =  ( 𝑏  ∖  𝑠 ) ) | 
						
							| 45 |  | difeq2 | ⊢ ( 𝑧  =  𝑡  →  ( 𝑏  ∖  𝑧 )  =  ( 𝑏  ∖  𝑡 ) ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  ∧  𝑧  =  𝑡 )  →  ( 𝑏  ∖  𝑧 )  =  ( 𝑏  ∖  𝑡 ) ) | 
						
							| 47 | 36 | difexi | ⊢ ( 𝑏  ∖  𝑡 )  ∈  V | 
						
							| 48 | 47 | a1i | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  ( 𝑏  ∖  𝑡 )  ∈  V ) | 
						
							| 49 | 26 46 32 48 | fvmptd | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  ( 𝑘 ‘ 𝑡 )  =  ( 𝑏  ∖  𝑡 ) ) | 
						
							| 50 | 44 49 | uneq12d | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  ( ( 𝑏  ∖  𝑠 )  ∪  ( 𝑏  ∖  𝑡 ) ) ) | 
						
							| 51 |  | difindi | ⊢ ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  ( ( 𝑏  ∖  𝑠 )  ∪  ( 𝑏  ∖  𝑡 ) ) | 
						
							| 52 | 50 51 | eqtr4di | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) ) ) | 
						
							| 53 | 39 52 | sseq12d | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  ( ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ↔  ( 𝑏  ∖  ( 𝑠  ∪  𝑡 ) )  ⊆  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) ) ) ) | 
						
							| 54 | 53 | ralbidva | ⊢ ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  →  ( ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ↔  ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑏  ∖  ( 𝑠  ∪  𝑡 ) )  ⊆  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) ) ) ) | 
						
							| 55 | 54 | ralbidva | ⊢ ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  →  ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ↔  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑏  ∖  ( 𝑠  ∪  𝑡 ) )  ⊆  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) ) ) ) | 
						
							| 56 | 52 | eqeq1d | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  ( ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏  ↔  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 ) ) | 
						
							| 57 | 56 | imbi2d | ⊢ ( ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  ∧  𝑡  ∈  𝒫  𝑏 )  →  ( ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 )  ↔  ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 ) ) ) | 
						
							| 58 | 57 | ralbidva | ⊢ ( ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  ∧  𝑠  ∈  𝒫  𝑏 )  →  ( ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 )  ↔  ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 ) ) ) | 
						
							| 59 | 58 | ralbidva | ⊢ ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  →  ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 )  ↔  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 ) ) ) | 
						
							| 60 | 59 | notbid | ⊢ ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  →  ( ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 )  ↔  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 ) ) ) | 
						
							| 61 | 55 60 | anbi12d | ⊢ ( ( 𝑏  ∈  ( V  ∖  { ∅ } )  ∧  𝑘  =  ( 𝑥  ∈  𝒫  𝑏  ↦  ( 𝑏  ∖  𝑥 ) ) )  →  ( ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) )  ↔  ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑏  ∖  ( 𝑠  ∪  𝑡 ) )  ⊆  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 ) ) ) ) | 
						
							| 62 |  | pwidg | ⊢ ( 𝑏  ∈  ( V  ∖  { ∅ } )  →  𝑏  ∈  𝒫  𝑏 ) | 
						
							| 63 |  | ssidd | ⊢ ( 𝑏  ∈  ( V  ∖  { ∅ } )  →  𝑏  ⊆  𝑏 ) | 
						
							| 64 |  | eldifsnneq | ⊢ ( 𝑏  ∈  ( V  ∖  { ∅ } )  →  ¬  𝑏  =  ∅ ) | 
						
							| 65 |  | uneq1 | ⊢ ( 𝑠  =  𝑏  →  ( 𝑠  ∪  𝑡 )  =  ( 𝑏  ∪  𝑡 ) ) | 
						
							| 66 | 65 | eqeq1d | ⊢ ( 𝑠  =  𝑏  →  ( ( 𝑠  ∪  𝑡 )  =  𝑏  ↔  ( 𝑏  ∪  𝑡 )  =  𝑏 ) ) | 
						
							| 67 |  | ssequn2 | ⊢ ( 𝑡  ⊆  𝑏  ↔  ( 𝑏  ∪  𝑡 )  =  𝑏 ) | 
						
							| 68 | 66 67 | bitr4di | ⊢ ( 𝑠  =  𝑏  →  ( ( 𝑠  ∪  𝑡 )  =  𝑏  ↔  𝑡  ⊆  𝑏 ) ) | 
						
							| 69 |  | ineq1 | ⊢ ( 𝑠  =  𝑏  →  ( 𝑠  ∩  𝑡 )  =  ( 𝑏  ∩  𝑡 ) ) | 
						
							| 70 | 69 | difeq2d | ⊢ ( 𝑠  =  𝑏  →  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  ( 𝑏  ∖  ( 𝑏  ∩  𝑡 ) ) ) | 
						
							| 71 | 70 | eqeq1d | ⊢ ( 𝑠  =  𝑏  →  ( ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏  ↔  ( 𝑏  ∖  ( 𝑏  ∩  𝑡 ) )  =  𝑏 ) ) | 
						
							| 72 | 71 | notbid | ⊢ ( 𝑠  =  𝑏  →  ( ¬  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏  ↔  ¬  ( 𝑏  ∖  ( 𝑏  ∩  𝑡 ) )  =  𝑏 ) ) | 
						
							| 73 | 68 72 | anbi12d | ⊢ ( 𝑠  =  𝑏  →  ( ( ( 𝑠  ∪  𝑡 )  =  𝑏  ∧  ¬  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 )  ↔  ( 𝑡  ⊆  𝑏  ∧  ¬  ( 𝑏  ∖  ( 𝑏  ∩  𝑡 ) )  =  𝑏 ) ) ) | 
						
							| 74 |  | sseq1 | ⊢ ( 𝑡  =  𝑏  →  ( 𝑡  ⊆  𝑏  ↔  𝑏  ⊆  𝑏 ) ) | 
						
							| 75 |  | ineq2 | ⊢ ( 𝑡  =  𝑏  →  ( 𝑏  ∩  𝑡 )  =  ( 𝑏  ∩  𝑏 ) ) | 
						
							| 76 |  | inidm | ⊢ ( 𝑏  ∩  𝑏 )  =  𝑏 | 
						
							| 77 | 75 76 | eqtrdi | ⊢ ( 𝑡  =  𝑏  →  ( 𝑏  ∩  𝑡 )  =  𝑏 ) | 
						
							| 78 | 77 | difeq2d | ⊢ ( 𝑡  =  𝑏  →  ( 𝑏  ∖  ( 𝑏  ∩  𝑡 ) )  =  ( 𝑏  ∖  𝑏 ) ) | 
						
							| 79 |  | difid | ⊢ ( 𝑏  ∖  𝑏 )  =  ∅ | 
						
							| 80 | 78 79 | eqtrdi | ⊢ ( 𝑡  =  𝑏  →  ( 𝑏  ∖  ( 𝑏  ∩  𝑡 ) )  =  ∅ ) | 
						
							| 81 | 80 | eqeq1d | ⊢ ( 𝑡  =  𝑏  →  ( ( 𝑏  ∖  ( 𝑏  ∩  𝑡 ) )  =  𝑏  ↔  ∅  =  𝑏 ) ) | 
						
							| 82 |  | eqcom | ⊢ ( ∅  =  𝑏  ↔  𝑏  =  ∅ ) | 
						
							| 83 | 81 82 | bitrdi | ⊢ ( 𝑡  =  𝑏  →  ( ( 𝑏  ∖  ( 𝑏  ∩  𝑡 ) )  =  𝑏  ↔  𝑏  =  ∅ ) ) | 
						
							| 84 | 83 | notbid | ⊢ ( 𝑡  =  𝑏  →  ( ¬  ( 𝑏  ∖  ( 𝑏  ∩  𝑡 ) )  =  𝑏  ↔  ¬  𝑏  =  ∅ ) ) | 
						
							| 85 | 74 84 | anbi12d | ⊢ ( 𝑡  =  𝑏  →  ( ( 𝑡  ⊆  𝑏  ∧  ¬  ( 𝑏  ∖  ( 𝑏  ∩  𝑡 ) )  =  𝑏 )  ↔  ( 𝑏  ⊆  𝑏  ∧  ¬  𝑏  =  ∅ ) ) ) | 
						
							| 86 | 73 85 | rspc2ev | ⊢ ( ( 𝑏  ∈  𝒫  𝑏  ∧  𝑏  ∈  𝒫  𝑏  ∧  ( 𝑏  ⊆  𝑏  ∧  ¬  𝑏  =  ∅ ) )  →  ∃ 𝑠  ∈  𝒫  𝑏 ∃ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  ∧  ¬  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 ) ) | 
						
							| 87 | 62 62 63 64 86 | syl112anc | ⊢ ( 𝑏  ∈  ( V  ∖  { ∅ } )  →  ∃ 𝑠  ∈  𝒫  𝑏 ∃ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  ∧  ¬  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 ) ) | 
						
							| 88 |  | rexanali | ⊢ ( ∃ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  ∧  ¬  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 )  ↔  ¬  ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 ) ) | 
						
							| 89 | 88 | rexbii | ⊢ ( ∃ 𝑠  ∈  𝒫  𝑏 ∃ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  ∧  ¬  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 )  ↔  ∃ 𝑠  ∈  𝒫  𝑏 ¬  ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 ) ) | 
						
							| 90 |  | rexnal | ⊢ ( ∃ 𝑠  ∈  𝒫  𝑏 ¬  ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 )  ↔  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 ) ) | 
						
							| 91 | 89 90 | sylbb | ⊢ ( ∃ 𝑠  ∈  𝒫  𝑏 ∃ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  ∧  ¬  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 )  →  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 ) ) | 
						
							| 92 | 87 91 | syl | ⊢ ( 𝑏  ∈  ( V  ∖  { ∅ } )  →  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 ) ) | 
						
							| 93 |  | inss1 | ⊢ ( 𝑠  ∩  𝑡 )  ⊆  𝑠 | 
						
							| 94 |  | ssun1 | ⊢ 𝑠  ⊆  ( 𝑠  ∪  𝑡 ) | 
						
							| 95 | 93 94 | sstri | ⊢ ( 𝑠  ∩  𝑡 )  ⊆  ( 𝑠  ∪  𝑡 ) | 
						
							| 96 |  | sscon | ⊢ ( ( 𝑠  ∩  𝑡 )  ⊆  ( 𝑠  ∪  𝑡 )  →  ( 𝑏  ∖  ( 𝑠  ∪  𝑡 ) )  ⊆  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) ) ) | 
						
							| 97 | 95 96 | ax-mp | ⊢ ( 𝑏  ∖  ( 𝑠  ∪  𝑡 ) )  ⊆  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) ) | 
						
							| 98 | 97 | rgen2w | ⊢ ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑏  ∖  ( 𝑠  ∪  𝑡 ) )  ⊆  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) ) | 
						
							| 99 | 92 98 | jctil | ⊢ ( 𝑏  ∈  ( V  ∖  { ∅ } )  →  ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑏  ∖  ( 𝑠  ∪  𝑡 ) )  ⊆  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( 𝑏  ∖  ( 𝑠  ∩  𝑡 ) )  =  𝑏 ) ) ) | 
						
							| 100 | 22 61 99 | rspcedvd | ⊢ ( 𝑏  ∈  ( V  ∖  { ∅ } )  →  ∃ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  ∧  ¬  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) ) ) | 
						
							| 101 | 16 100 | mprg | ⊢ ¬  ∀ 𝑏 ∀ 𝑘  ∈  ( 𝒫  𝑏  ↑m  𝒫  𝑏 ) ( ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( 𝑘 ‘ ( 𝑠  ∪  𝑡 ) )  ⊆  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  →  ∀ 𝑠  ∈  𝒫  𝑏 ∀ 𝑡  ∈  𝒫  𝑏 ( ( 𝑠  ∪  𝑡 )  =  𝑏  →  ( ( 𝑘 ‘ 𝑠 )  ∪  ( 𝑘 ‘ 𝑡 ) )  =  𝑏 ) ) |