Step |
Hyp |
Ref |
Expression |
1 |
|
1oex |
⊢ 1o ∈ V |
2 |
|
1n0 |
⊢ 1o ≠ ∅ |
3 |
|
nelsn |
⊢ ( 1o ≠ ∅ → ¬ 1o ∈ { ∅ } ) |
4 |
2 3
|
ax-mp |
⊢ ¬ 1o ∈ { ∅ } |
5 |
|
eldif |
⊢ ( 1o ∈ ( V ∖ { ∅ } ) ↔ ( 1o ∈ V ∧ ¬ 1o ∈ { ∅ } ) ) |
6 |
|
ne0i |
⊢ ( 1o ∈ ( V ∖ { ∅ } ) → ( V ∖ { ∅ } ) ≠ ∅ ) |
7 |
5 6
|
sylbir |
⊢ ( ( 1o ∈ V ∧ ¬ 1o ∈ { ∅ } ) → ( V ∖ { ∅ } ) ≠ ∅ ) |
8 |
1 4 7
|
mp2an |
⊢ ( V ∖ { ∅ } ) ≠ ∅ |
9 |
|
r19.2zb |
⊢ ( ( V ∖ { ∅ } ) ≠ ∅ ↔ ( ∀ 𝑏 ∈ ( V ∖ { ∅ } ) ∃ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) → ∃ 𝑏 ∈ ( V ∖ { ∅ } ) ∃ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) ) ) |
10 |
8 9
|
mpbi |
⊢ ( ∀ 𝑏 ∈ ( V ∖ { ∅ } ) ∃ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) → ∃ 𝑏 ∈ ( V ∖ { ∅ } ) ∃ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) ) |
11 |
|
rexex |
⊢ ( ∃ 𝑏 ∈ ( V ∖ { ∅ } ) ∃ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) → ∃ 𝑏 ∃ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) ) |
12 |
|
rexanali |
⊢ ( ∃ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) ↔ ¬ ∀ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) → ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) ) |
13 |
12
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) ↔ ∃ 𝑏 ¬ ∀ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) → ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) ) |
14 |
|
exnal |
⊢ ( ∃ 𝑏 ¬ ∀ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) → ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) ↔ ¬ ∀ 𝑏 ∀ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) → ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) ) |
15 |
13 14
|
sylbb |
⊢ ( ∃ 𝑏 ∃ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) → ¬ ∀ 𝑏 ∀ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) → ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) ) |
16 |
10 11 15
|
3syl |
⊢ ( ∀ 𝑏 ∈ ( V ∖ { ∅ } ) ∃ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) → ¬ ∀ 𝑏 ∀ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) → ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) ) |
17 |
|
difelpw |
⊢ ( 𝑏 ∈ ( V ∖ { ∅ } ) → ( 𝑏 ∖ 𝑥 ) ∈ 𝒫 𝑏 ) |
18 |
17
|
adantr |
⊢ ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑥 ∈ 𝒫 𝑏 ) → ( 𝑏 ∖ 𝑥 ) ∈ 𝒫 𝑏 ) |
19 |
18
|
fmpttd |
⊢ ( 𝑏 ∈ ( V ∖ { ∅ } ) → ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) : 𝒫 𝑏 ⟶ 𝒫 𝑏 ) |
20 |
|
pwexg |
⊢ ( 𝑏 ∈ ( V ∖ { ∅ } ) → 𝒫 𝑏 ∈ V ) |
21 |
20 20
|
elmapd |
⊢ ( 𝑏 ∈ ( V ∖ { ∅ } ) → ( ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ↔ ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) : 𝒫 𝑏 ⟶ 𝒫 𝑏 ) ) |
22 |
19 21
|
mpbird |
⊢ ( 𝑏 ∈ ( V ∖ { ∅ } ) → ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ) |
23 |
|
simpllr |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) |
24 |
|
difeq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑏 ∖ 𝑥 ) = ( 𝑏 ∖ 𝑧 ) ) |
25 |
24
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) = ( 𝑧 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑧 ) ) |
26 |
23 25
|
eqtrdi |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → 𝑘 = ( 𝑧 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑧 ) ) ) |
27 |
|
difeq2 |
⊢ ( 𝑧 = ( 𝑠 ∪ 𝑡 ) → ( 𝑏 ∖ 𝑧 ) = ( 𝑏 ∖ ( 𝑠 ∪ 𝑡 ) ) ) |
28 |
27
|
adantl |
⊢ ( ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) ∧ 𝑧 = ( 𝑠 ∪ 𝑡 ) ) → ( 𝑏 ∖ 𝑧 ) = ( 𝑏 ∖ ( 𝑠 ∪ 𝑡 ) ) ) |
29 |
|
simplll |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → 𝑏 ∈ ( V ∖ { ∅ } ) ) |
30 |
|
simplr |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → 𝑠 ∈ 𝒫 𝑏 ) |
31 |
30
|
elpwid |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → 𝑠 ⊆ 𝑏 ) |
32 |
|
simpr |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → 𝑡 ∈ 𝒫 𝑏 ) |
33 |
32
|
elpwid |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → 𝑡 ⊆ 𝑏 ) |
34 |
31 33
|
unssd |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → ( 𝑠 ∪ 𝑡 ) ⊆ 𝑏 ) |
35 |
29 34
|
sselpwd |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → ( 𝑠 ∪ 𝑡 ) ∈ 𝒫 𝑏 ) |
36 |
|
vex |
⊢ 𝑏 ∈ V |
37 |
36
|
difexi |
⊢ ( 𝑏 ∖ ( 𝑠 ∪ 𝑡 ) ) ∈ V |
38 |
37
|
a1i |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → ( 𝑏 ∖ ( 𝑠 ∪ 𝑡 ) ) ∈ V ) |
39 |
26 28 35 38
|
fvmptd |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( 𝑏 ∖ ( 𝑠 ∪ 𝑡 ) ) ) |
40 |
|
difeq2 |
⊢ ( 𝑧 = 𝑠 → ( 𝑏 ∖ 𝑧 ) = ( 𝑏 ∖ 𝑠 ) ) |
41 |
40
|
adantl |
⊢ ( ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) ∧ 𝑧 = 𝑠 ) → ( 𝑏 ∖ 𝑧 ) = ( 𝑏 ∖ 𝑠 ) ) |
42 |
36
|
difexi |
⊢ ( 𝑏 ∖ 𝑠 ) ∈ V |
43 |
42
|
a1i |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → ( 𝑏 ∖ 𝑠 ) ∈ V ) |
44 |
26 41 30 43
|
fvmptd |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → ( 𝑘 ‘ 𝑠 ) = ( 𝑏 ∖ 𝑠 ) ) |
45 |
|
difeq2 |
⊢ ( 𝑧 = 𝑡 → ( 𝑏 ∖ 𝑧 ) = ( 𝑏 ∖ 𝑡 ) ) |
46 |
45
|
adantl |
⊢ ( ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) ∧ 𝑧 = 𝑡 ) → ( 𝑏 ∖ 𝑧 ) = ( 𝑏 ∖ 𝑡 ) ) |
47 |
36
|
difexi |
⊢ ( 𝑏 ∖ 𝑡 ) ∈ V |
48 |
47
|
a1i |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → ( 𝑏 ∖ 𝑡 ) ∈ V ) |
49 |
26 46 32 48
|
fvmptd |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → ( 𝑘 ‘ 𝑡 ) = ( 𝑏 ∖ 𝑡 ) ) |
50 |
44 49
|
uneq12d |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = ( ( 𝑏 ∖ 𝑠 ) ∪ ( 𝑏 ∖ 𝑡 ) ) ) |
51 |
|
difindi |
⊢ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = ( ( 𝑏 ∖ 𝑠 ) ∪ ( 𝑏 ∖ 𝑡 ) ) |
52 |
50 51
|
eqtr4di |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) ) |
53 |
39 52
|
sseq12d |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → ( ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ↔ ( 𝑏 ∖ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) ) ) |
54 |
53
|
ralbidva |
⊢ ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) → ( ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑏 ∖ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) ) ) |
55 |
54
|
ralbidva |
⊢ ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) → ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑏 ∖ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) ) ) |
56 |
52
|
eqeq1d |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → ( ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ↔ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ) |
57 |
56
|
imbi2d |
⊢ ( ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) ∧ 𝑡 ∈ 𝒫 𝑏 ) → ( ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ↔ ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ) ) |
58 |
57
|
ralbidva |
⊢ ( ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) ∧ 𝑠 ∈ 𝒫 𝑏 ) → ( ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ↔ ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ) ) |
59 |
58
|
ralbidva |
⊢ ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) → ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ↔ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ) ) |
60 |
59
|
notbid |
⊢ ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) → ( ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ↔ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ) ) |
61 |
55 60
|
anbi12d |
⊢ ( ( 𝑏 ∈ ( V ∖ { ∅ } ) ∧ 𝑘 = ( 𝑥 ∈ 𝒫 𝑏 ↦ ( 𝑏 ∖ 𝑥 ) ) ) → ( ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) ↔ ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑏 ∖ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ) ) ) |
62 |
|
pwidg |
⊢ ( 𝑏 ∈ ( V ∖ { ∅ } ) → 𝑏 ∈ 𝒫 𝑏 ) |
63 |
|
ssidd |
⊢ ( 𝑏 ∈ ( V ∖ { ∅ } ) → 𝑏 ⊆ 𝑏 ) |
64 |
|
eldifsnneq |
⊢ ( 𝑏 ∈ ( V ∖ { ∅ } ) → ¬ 𝑏 = ∅ ) |
65 |
|
uneq1 |
⊢ ( 𝑠 = 𝑏 → ( 𝑠 ∪ 𝑡 ) = ( 𝑏 ∪ 𝑡 ) ) |
66 |
65
|
eqeq1d |
⊢ ( 𝑠 = 𝑏 → ( ( 𝑠 ∪ 𝑡 ) = 𝑏 ↔ ( 𝑏 ∪ 𝑡 ) = 𝑏 ) ) |
67 |
|
ssequn2 |
⊢ ( 𝑡 ⊆ 𝑏 ↔ ( 𝑏 ∪ 𝑡 ) = 𝑏 ) |
68 |
66 67
|
bitr4di |
⊢ ( 𝑠 = 𝑏 → ( ( 𝑠 ∪ 𝑡 ) = 𝑏 ↔ 𝑡 ⊆ 𝑏 ) ) |
69 |
|
ineq1 |
⊢ ( 𝑠 = 𝑏 → ( 𝑠 ∩ 𝑡 ) = ( 𝑏 ∩ 𝑡 ) ) |
70 |
69
|
difeq2d |
⊢ ( 𝑠 = 𝑏 → ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = ( 𝑏 ∖ ( 𝑏 ∩ 𝑡 ) ) ) |
71 |
70
|
eqeq1d |
⊢ ( 𝑠 = 𝑏 → ( ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ↔ ( 𝑏 ∖ ( 𝑏 ∩ 𝑡 ) ) = 𝑏 ) ) |
72 |
71
|
notbid |
⊢ ( 𝑠 = 𝑏 → ( ¬ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ↔ ¬ ( 𝑏 ∖ ( 𝑏 ∩ 𝑡 ) ) = 𝑏 ) ) |
73 |
68 72
|
anbi12d |
⊢ ( 𝑠 = 𝑏 → ( ( ( 𝑠 ∪ 𝑡 ) = 𝑏 ∧ ¬ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ↔ ( 𝑡 ⊆ 𝑏 ∧ ¬ ( 𝑏 ∖ ( 𝑏 ∩ 𝑡 ) ) = 𝑏 ) ) ) |
74 |
|
sseq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 ⊆ 𝑏 ↔ 𝑏 ⊆ 𝑏 ) ) |
75 |
|
ineq2 |
⊢ ( 𝑡 = 𝑏 → ( 𝑏 ∩ 𝑡 ) = ( 𝑏 ∩ 𝑏 ) ) |
76 |
|
inidm |
⊢ ( 𝑏 ∩ 𝑏 ) = 𝑏 |
77 |
75 76
|
eqtrdi |
⊢ ( 𝑡 = 𝑏 → ( 𝑏 ∩ 𝑡 ) = 𝑏 ) |
78 |
77
|
difeq2d |
⊢ ( 𝑡 = 𝑏 → ( 𝑏 ∖ ( 𝑏 ∩ 𝑡 ) ) = ( 𝑏 ∖ 𝑏 ) ) |
79 |
|
difid |
⊢ ( 𝑏 ∖ 𝑏 ) = ∅ |
80 |
78 79
|
eqtrdi |
⊢ ( 𝑡 = 𝑏 → ( 𝑏 ∖ ( 𝑏 ∩ 𝑡 ) ) = ∅ ) |
81 |
80
|
eqeq1d |
⊢ ( 𝑡 = 𝑏 → ( ( 𝑏 ∖ ( 𝑏 ∩ 𝑡 ) ) = 𝑏 ↔ ∅ = 𝑏 ) ) |
82 |
|
eqcom |
⊢ ( ∅ = 𝑏 ↔ 𝑏 = ∅ ) |
83 |
81 82
|
bitrdi |
⊢ ( 𝑡 = 𝑏 → ( ( 𝑏 ∖ ( 𝑏 ∩ 𝑡 ) ) = 𝑏 ↔ 𝑏 = ∅ ) ) |
84 |
83
|
notbid |
⊢ ( 𝑡 = 𝑏 → ( ¬ ( 𝑏 ∖ ( 𝑏 ∩ 𝑡 ) ) = 𝑏 ↔ ¬ 𝑏 = ∅ ) ) |
85 |
74 84
|
anbi12d |
⊢ ( 𝑡 = 𝑏 → ( ( 𝑡 ⊆ 𝑏 ∧ ¬ ( 𝑏 ∖ ( 𝑏 ∩ 𝑡 ) ) = 𝑏 ) ↔ ( 𝑏 ⊆ 𝑏 ∧ ¬ 𝑏 = ∅ ) ) ) |
86 |
73 85
|
rspc2ev |
⊢ ( ( 𝑏 ∈ 𝒫 𝑏 ∧ 𝑏 ∈ 𝒫 𝑏 ∧ ( 𝑏 ⊆ 𝑏 ∧ ¬ 𝑏 = ∅ ) ) → ∃ 𝑠 ∈ 𝒫 𝑏 ∃ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 ∧ ¬ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ) |
87 |
62 62 63 64 86
|
syl112anc |
⊢ ( 𝑏 ∈ ( V ∖ { ∅ } ) → ∃ 𝑠 ∈ 𝒫 𝑏 ∃ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 ∧ ¬ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ) |
88 |
|
rexanali |
⊢ ( ∃ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 ∧ ¬ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ↔ ¬ ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ) |
89 |
88
|
rexbii |
⊢ ( ∃ 𝑠 ∈ 𝒫 𝑏 ∃ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 ∧ ¬ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ↔ ∃ 𝑠 ∈ 𝒫 𝑏 ¬ ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ) |
90 |
|
rexnal |
⊢ ( ∃ 𝑠 ∈ 𝒫 𝑏 ¬ ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ↔ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ) |
91 |
89 90
|
sylbb |
⊢ ( ∃ 𝑠 ∈ 𝒫 𝑏 ∃ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 ∧ ¬ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) → ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ) |
92 |
87 91
|
syl |
⊢ ( 𝑏 ∈ ( V ∖ { ∅ } ) → ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ) |
93 |
|
inss1 |
⊢ ( 𝑠 ∩ 𝑡 ) ⊆ 𝑠 |
94 |
|
ssun1 |
⊢ 𝑠 ⊆ ( 𝑠 ∪ 𝑡 ) |
95 |
93 94
|
sstri |
⊢ ( 𝑠 ∩ 𝑡 ) ⊆ ( 𝑠 ∪ 𝑡 ) |
96 |
|
sscon |
⊢ ( ( 𝑠 ∩ 𝑡 ) ⊆ ( 𝑠 ∪ 𝑡 ) → ( 𝑏 ∖ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) ) |
97 |
95 96
|
ax-mp |
⊢ ( 𝑏 ∖ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) |
98 |
97
|
rgen2w |
⊢ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑏 ∖ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) |
99 |
92 98
|
jctil |
⊢ ( 𝑏 ∈ ( V ∖ { ∅ } ) → ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑏 ∖ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( 𝑏 ∖ ( 𝑠 ∩ 𝑡 ) ) = 𝑏 ) ) ) |
100 |
22 61 99
|
rspcedvd |
⊢ ( 𝑏 ∈ ( V ∖ { ∅ } ) → ∃ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) ∧ ¬ ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) ) |
101 |
16 100
|
mprg |
⊢ ¬ ∀ 𝑏 ∀ 𝑘 ∈ ( 𝒫 𝑏 ↑m 𝒫 𝑏 ) ( ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( 𝑘 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) → ∀ 𝑠 ∈ 𝒫 𝑏 ∀ 𝑡 ∈ 𝒫 𝑏 ( ( 𝑠 ∪ 𝑡 ) = 𝑏 → ( ( 𝑘 ‘ 𝑠 ) ∪ ( 𝑘 ‘ 𝑡 ) ) = 𝑏 ) ) |