| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numclwwlk3lem2.c | 
							 |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
						
							| 2 | 
							
								
							 | 
							numclwwlk3lem2.h | 
							 |-  H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) | 
						
						
							| 3 | 
							
								2
							 | 
							numclwwlkovh0 | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } ) | 
						
						
							| 4 | 
							
								1
							 | 
							2clwwlk | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) | 
						
						
							| 5 | 
							
								3 4
							 | 
							uneq12d | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( ( X H N ) u. ( X C N ) ) = ( { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } u. { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) ) | 
						
						
							| 6 | 
							
								
							 | 
							unrab | 
							 |-  ( { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } u. { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( ( w ` ( N - 2 ) ) =/= X \/ ( w ` ( N - 2 ) ) = X ) } | 
						
						
							| 7 | 
							
								
							 | 
							exmidne | 
							 |-  ( ( w ` ( N - 2 ) ) = X \/ ( w ` ( N - 2 ) ) =/= X )  | 
						
						
							| 8 | 
							
								
							 | 
							orcom | 
							 |-  ( ( ( w ` ( N - 2 ) ) =/= X \/ ( w ` ( N - 2 ) ) = X ) <-> ( ( w ` ( N - 2 ) ) = X \/ ( w ` ( N - 2 ) ) =/= X ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							mpbir | 
							 |-  ( ( w ` ( N - 2 ) ) =/= X \/ ( w ` ( N - 2 ) ) = X )  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							 |-  ( w e. ( X ( ClWWalksNOn ` G ) N ) -> ( ( w ` ( N - 2 ) ) =/= X \/ ( w ` ( N - 2 ) ) = X ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							rabeqc | 
							 |-  { w e. ( X ( ClWWalksNOn ` G ) N ) | ( ( w ` ( N - 2 ) ) =/= X \/ ( w ` ( N - 2 ) ) = X ) } = ( X ( ClWWalksNOn ` G ) N ) | 
						
						
							| 12 | 
							
								6 11
							 | 
							eqtri | 
							 |-  ( { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } u. { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) = ( X ( ClWWalksNOn ` G ) N ) | 
						
						
							| 13 | 
							
								5 12
							 | 
							eqtr2di | 
							 |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X ( ClWWalksNOn ` G ) N ) = ( ( X H N ) u. ( X C N ) ) )  |