| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk3lem2.c |  |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
							| 2 |  | numclwwlk3lem2.h |  |-  H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) | 
						
							| 3 | 1 2 | numclwwlk3lem2lem |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X ( ClWWalksNOn ` G ) N ) = ( ( X H N ) u. ( X C N ) ) ) | 
						
							| 4 | 3 | adantll |  |-  ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( X ( ClWWalksNOn ` G ) N ) = ( ( X H N ) u. ( X C N ) ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) N ) ) = ( # ` ( ( X H N ) u. ( X C N ) ) ) ) | 
						
							| 6 | 2 | numclwwlkovh0 |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } ) | 
						
							| 7 | 6 | adantll |  |-  ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } ) | 
						
							| 8 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 9 | 8 | fusgrvtxfi |  |-  ( G e. FinUSGraph -> ( Vtx ` G ) e. Fin ) | 
						
							| 10 | 9 | ad2antrr |  |-  ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( Vtx ` G ) e. Fin ) | 
						
							| 11 | 8 | clwwlknonfin |  |-  ( ( Vtx ` G ) e. Fin -> ( X ( ClWWalksNOn ` G ) N ) e. Fin ) | 
						
							| 12 |  | rabfi |  |-  ( ( X ( ClWWalksNOn ` G ) N ) e. Fin -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } e. Fin ) | 
						
							| 13 | 10 11 12 | 3syl |  |-  ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } e. Fin ) | 
						
							| 14 | 7 13 | eqeltrd |  |-  ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) e. Fin ) | 
						
							| 15 | 1 | 2clwwlk |  |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) | 
						
							| 16 | 15 | adantll |  |-  ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) | 
						
							| 17 |  | rabfi |  |-  ( ( X ( ClWWalksNOn ` G ) N ) e. Fin -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } e. Fin ) | 
						
							| 18 | 10 11 17 | 3syl |  |-  ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } e. Fin ) | 
						
							| 19 | 16 18 | eqeltrd |  |-  ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( X C N ) e. Fin ) | 
						
							| 20 | 7 16 | ineq12d |  |-  ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( ( X H N ) i^i ( X C N ) ) = ( { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } i^i { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) ) | 
						
							| 21 |  | inrab |  |-  ( { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } i^i { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) } | 
						
							| 22 |  | exmid |  |-  ( ( w ` ( N - 2 ) ) = X \/ -. ( w ` ( N - 2 ) ) = X ) | 
						
							| 23 |  | ianor |  |-  ( -. ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) <-> ( -. ( w ` ( N - 2 ) ) =/= X \/ -. ( w ` ( N - 2 ) ) = X ) ) | 
						
							| 24 |  | nne |  |-  ( -. ( w ` ( N - 2 ) ) =/= X <-> ( w ` ( N - 2 ) ) = X ) | 
						
							| 25 | 24 | orbi1i |  |-  ( ( -. ( w ` ( N - 2 ) ) =/= X \/ -. ( w ` ( N - 2 ) ) = X ) <-> ( ( w ` ( N - 2 ) ) = X \/ -. ( w ` ( N - 2 ) ) = X ) ) | 
						
							| 26 | 23 25 | bitri |  |-  ( -. ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( w ` ( N - 2 ) ) = X \/ -. ( w ` ( N - 2 ) ) = X ) ) | 
						
							| 27 | 22 26 | mpbir |  |-  -. ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) | 
						
							| 28 | 27 | rgenw |  |-  A. w e. ( X ( ClWWalksNOn ` G ) N ) -. ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) | 
						
							| 29 |  | rabeq0 |  |-  ( { w e. ( X ( ClWWalksNOn ` G ) N ) | ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) } = (/) <-> A. w e. ( X ( ClWWalksNOn ` G ) N ) -. ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) ) | 
						
							| 30 | 28 29 | mpbir |  |-  { w e. ( X ( ClWWalksNOn ` G ) N ) | ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) } = (/) | 
						
							| 31 | 21 30 | eqtri |  |-  ( { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } i^i { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) = (/) | 
						
							| 32 | 20 31 | eqtrdi |  |-  ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( ( X H N ) i^i ( X C N ) ) = (/) ) | 
						
							| 33 |  | hashun |  |-  ( ( ( X H N ) e. Fin /\ ( X C N ) e. Fin /\ ( ( X H N ) i^i ( X C N ) ) = (/) ) -> ( # ` ( ( X H N ) u. ( X C N ) ) ) = ( ( # ` ( X H N ) ) + ( # ` ( X C N ) ) ) ) | 
						
							| 34 | 14 19 32 33 | syl3anc |  |-  ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( # ` ( ( X H N ) u. ( X C N ) ) ) = ( ( # ` ( X H N ) ) + ( # ` ( X C N ) ) ) ) | 
						
							| 35 | 5 34 | eqtrd |  |-  ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) N ) ) = ( ( # ` ( X H N ) ) + ( # ` ( X C N ) ) ) ) |